

DEPARTMENT OF MECHANICAL ENGINEERING

M.E- Thermal Engineering Regulation 2024

CHOICE BASED CREDIT SYSTEM (CBCS)

CURRICULUM AND SYLLABUS

ARUNAI ENGINEERING COLLEGE

(An Autonomous Institution Affiliated to Anna University Chennai)

DEPARTMENT OF MECHANICAL ENGINEERING M.E-THERMAL ENGINEERING REGULATION 2024 CHOICE BASED CREDIT SYSTEM CURRICULUM AND SYLLABUS I TO IV SEMESTERS

DEPARTMENT VISION:

- To produce multi-skilled and ethical Mechanical Engineers with global perspectives and National ethos.
- To serve the needs of the National and International Industries.
- To impart training and technology transfer appropriate to the rural areas and industries.

DEPARTMENT MISSION:

- Providing suitable teaching methods and adequate high quality focused education in thrust areas of Mechanical Engineering like Energy, Materials and CAE.
- Training in problem solving, assisting in analytical skills and developing technical competence with practical exposure to the students to meet the challenges of new millennium.

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs):

- Analyze, design and evaluate thermal systems using state of the art engineering tools and techniques
- II. Develop methods of energy conservation for sustainable growth
- III. Communicate effectively and support constructively towards team work
- IV. Pursue lifelong learning for professional growth with ethical concern for society and environment.

PROGRAMME OUTCOMES:

On successful completion of the programme,

- 1. An ability to independently carryout research/ investigation and development work to solve practical problems.
- 2. An ability to write and present a substantial technical report/document.
- 3. Demonstrate a degree of mastery over thermal engineering at a level higher than the Bachelor's program.
- 4. Design, develop and analyze thermal systems for improved performance
- 5. Identify viable energy sources and develop effective technologies to harness them
- 6. Engage in lifelong learning adhering to professional, ethical, legal, safety, environmental and societal aspects for career excellence.

PROGRAM SPECIFIC OUTCOMES (PSOs)

PSO1: Apply Advanced Thermal Concepts

PSO2. Design and Development of Thermal Systems

PSO3: Research and Innovation in Energy Systems

PEO/PO Mapping

Риодиотта	Programme Outcomes										
Programme Educational Objectives	PO1	PO2	PO3	PO4	PO5	PO6					
I	3	3	3	3	3	2					
II	3	2	3	2	2	2					
II	2	2	2	2	2	3					
IV	3	3	3	3	3	3					

Semester Course wise PEO mapping

YEAR	SEM	Subject Name	PO1	PO2	PO3	PO4	PO5	PO6
		Advanced Numerical Methods	3.	3	3	1	2	1
		Advanced Heat Transfer	3	3	3	2	3	3
		Advanced Thermodynamics	3	3	3	2	3	3
		Advanced Fluid Mechanics	3	3	3	2	11	3
		Research Methodology and IPR	3	1	3	1	1	1
		Aircraft and Jet Propulsion	3	3	3	3	3	3
		Hydrogen and Fuel Cell Technologies	3	3	3	3	3	3
YEAR 1	SEM 1	Energy Resources	3	2	3	2	3	3
YEAR I	SEM I	Advanced Internal Combustion Engines	3	3	3	3	3	3
		Cryogenic Engineering	3	3	3	2	3	3
		Refrigeration Systems	2.5	2	3	2	2	2
		Electronic Engine Management Systems	2	2	3	2	1	2
		Cogeneration and Waste Heat Recovery Systems	2	2	3	2	2	2
		Thermal Engineering Laboratory	2	3	3			3
		Instrumentation for Thermal Engineering	2	2	3	. 3	3	3
		Computational Fluid Dynamics	3	3	3	3	2	2
	SEM 2	Fuels, Combustion and Pollution Control	3	3	3	3	1	3
		Fans, Blowers and Compressors	3	3	3	3	1	3
	<	Food Processing, Preservation and Transport	3	3	3	3	3	-3
		Air Conditioning Systems	3	3	3	3	2	2
		Energy Management in Thermal Systems	2	2	3	2	1	3

		Alternative Fuels for IC Engines	3	2	3	2	3	3
		Design of Heat Exchangers	3	3	3	3	2	3
		Heat Transfer Enhancement Techniques	3	3	3	3	3	3
		Electronic Packaging And Cooling Of Electronic Systems	2	1	3	3	1	3
		Battery Thermal Management Systems	2	2	3	2	1	3
YEAR 1	SEM 2	Energy Storage Technologies	3	2	2	2	3	2
		Electric And Hybrid Vehicles	3	2	3	3	3	3
		Advanced power plant Engineering	3	3	3	3	2	3
		Thermal Systems Simulation Laboratory	2	3	3	2	3	2
		Technical Seminar-I	2	3	2	3	2	3
		Design and Optimization of Thermal Energy Systems	3	3	2	3	3	3
		Design and Analysis of Turbo machines	3	3	3	3	3	3
		Boundary Layer Theory and Turbulence	3	3	3	3	2	2
		Steam Generator Technology	3	3	3	3	3	3
		Fluidized Bed Systems	3	2	3	3	3	3
	SEM 3	Data analytics and IOT for thermal systems	- 2	3	2	3	2	1
YEAR 2	SLIVI 5	Energy Efficient Building	3	3	3	2	3	3
		Engine Pollution And Control	2	3	2	1	1	3
		Solar Energy Technologies	3	3	3	3	3	3
		Industrial Safety Engineering	2	2	2	2	2	3
		Technical Seminar–II	3	3	3	2	3	2
		Project work–I	3	3	3	3	3	3
	SEM 4	Project work Phase–II	3	3	3	3	3	3

ARUNAI ENGINEERING COLLEGE

(AUTONOMOUS)

TIRUVANNAMALAI REGULATIONS 2024

CHOICE BASED CREDIT SYSTEM

M.E THERMAL ENGINEERING

CURRICULAM AND SYLLABI FOR SEMESTER I TO IV

SEMESTER I

S.NO	COURSE CODE	COURSE TITLE	CATEGORY]	RIOI PER VEEF		TOTAL CONTACT PERIODS	CREDITS
		THEORY		L	Т	P		
1	MA24101	Advanced Numerical Methods	FC	4	0	0	4	4
2	TE24101	Advanced Heat Transfer	FC	4	0	0	4	4
3	TE24102	Advanced Thermodynamics	PCC	3	1	0	4	4
4	TE24103	Advanced Fluid Mechanics	PCC	3	0	0	3	3
5	RM24101	Research Methodology and IPR	RMC	2	0	0	2	2
6		Professional Elective - I	PEC	3	0	0	3	3
7		Professional Elective - II	PEC	3	0	0	3	3
8		Audit Course I*	AC	2	0	0	2	0
		PRACTICALS						
9	TE24111	Thermal Engineering Laboratory	PCC	0	0	4	4	2
		TOTAL	-	24	1	4	29	25

^{*} Audit Course is optional

SEMESTER II

		SUME	STERII					
S.NO	COURSE CODE	COURSE TITLE	CATEGORY		RIOI PER ÆEF		TOTAL CONTACT PERIODS	CREDITS
	-	THEORY		L	Т	P		
1	TE24201	Instrumentation for Thermal Engineering	PCC	3	0	0	3 ·	3
2	IC24201	Computational Fluid Dynamics	PCC	3	0	0	3	3
3	TE24202	Fuels, Combustion and Emission Control	PCC	4	0	0	4	4
4		Professional Elective - III	PEC	3	0	0	3	3
5		Professional Elective - IV	PEC	3	0	0	3	3
6		Professional Elective - V	PEC	3	0	0	3	3
7		Audit Course II*	AC	2	0	0	2	0
		PRACTICALS						
8	TE24211	Thermal Systems Simulation Laboratory	PCC	0	0	4	4	2
9	TE24212	Technical Seminar – I	EEC	0	0	2	2	1
	,	TOTAL		21	0	6	27	22

^{*} Audit Course is optional

SEMESTER III

		V21.11	JO A LUIT III					
S.NO	COURSE CODE	COURSE TITLE	CATEGORY		PERIODS PER WEEK		TOTAL CONTACT PERIODS	CREDITS
		THEORY		L	T	P		
1	TE24301	Design and Optimization of Thermal Energy Systems	PCC	3	0	0	3	3
2		Professional Elective - VI	PEC	3	0	0	3	3
3		Open Elective	OEC	3	0	0	3	3
		PRACTICALS						
8	TE24311	Technical Seminar – II	EEC	0	0	2	2	1
9	TE24312	Project Work - I	EEC	0	0	12	12	6
		TOTAL		9	0	14	23	16

SEMESTER IV

S.NO	COURSE CODE	COURSE TITLE	CATEGORY		ERIC PEI VER		TOTAL CONTACT PERIODS	CREDITS
		PRACTICALS						
9	TE24411	Project Work - II	EEC	0	0	24	24	12
		TOTAL		0	0	24	24	12

TOTAL CREDITS: 75

]	Name of the Progra	mme: M.E	THERM	AL ENGI	NEERIN	G
C N-	Cubicat Auga		Total			
S.No	Subject Area	Ι	II	III	IV	Credits
1.	FC	8				8
2.	PCC	9	12	3	•	24
3.	RMC	2				2
4.	PEC	6	9	3		18
5.	OEC			3		3
6.	EEC		1	7	12	20
7.	Non Credit/ Audit Course	✓	✓			
	TOTAL		22	16	12	75

HoD/BOS Chairman

PROFESSIONAL ELECTIVES SEMESTER I, ELECTIVE I & II

S.NO	COURSE CODE	COURSE TITLE	CATEGORY		ERIO PER VEEI		TOTAL CONTACT PERIODS	CREDITS
				L	Т	P		
1	TE24001	Aircraft and Jet Propulsion	PEC	3	0	0	3	3
2	TE24002	Hydrogen and Fuel Cell Technologies	PEC	3	0	0	3	3
3	TE24003	Energy Resources	PEC	3	0	0	3	3
4	TE24004	Advanced Internal Combustion Engines	PEC	3	0	0	3	3
5	TE24005	Cryogenic Engineering	PEC	3	0	0	3	3
6	TE24006	Refrigeration Systems	PEC	3	0	0	3	3
7	IC24001	Electronic Engine Management Systems	PEC	3	0	0	3	3
8	TE24007	Cogeneration and Waste Heat Recovery Systems	PEC	3	0	0	3	3

PROFESSIONAL ELECTIVES
SEMESTER II. ELECTIVE III, IV & V

s.NO	COURSE CODE	COURSE TITLE	CATEGORY	PERIODS PER WEEK			TOTAL CONTACT PERIODS	CREDITS
				L	T	P		
1	TE24008	Design of Turbo Machines	PEC	3	0	0	3	3
2	TE24009	Electronics Cooling and Packaging	PEC	3	0	0	3	3
3	TE24010	Air Conditioning Systems	PEC	3	0	0	3	3
4	IC24002	Alternate Fuels for IC Engines	PEC	3	0	0	3	3
5	TE24011	Design of Heat Exchangers	PEC	3	0	0	3	3
6	TE24012	Battery Thermal Management System	PEC	3	0	0	3	3
7	EY24001	Advanced Energy Storage Technologies	PEC	3	0	0	3	3
8	IC24003	Hybrid and Electric Vehicles	PEC	3	0	0	3	3
9	TE24013	Advanced Power Plant Engineering	PEC	3	0	0	3	3

HoD/BOS Chairman

PROFESSIONAL ELECTIVES

SEMESTER III, ELECTIVE VI

S.NO	COURSE	COURSETTILE	CATEGORY		RIOD R WE		TOTAL CONTACT	CREDITS
51710	CODE			L	Т	P	PERIODS	
1	IC24004	Boundary Layer Theory and Turbulence	PEC	3	0	0	3	3
2	TE24014	Steam Generator Technology	PEC	3	0	0	3	3
3	EY24002	Fluidized Bed Systems	PEC	3	0	0	3	3
4	TE24015	Energy Efficient Buildings	PEC	3	0	0	3	3
5	IC24005	Engine Pollution and Control	PEC	3	0	0	3	3
6	TE24016	Solar Thermal Technologies	PEC	3	0	0	3	3

AUDIT COURSES - I REGISTRATION FOR ANY OF THESE COURSES IS OPTIONAL TO STUDENTS

PERIODS TOTAL **COURSE** PER WEEK S.NO **COURSE TITLE** CONTACT **CREDITS** CODE **PERIODS** \mathbf{L} T P 0 0 2 0 1 AX24001 English for Research Paper Writing 2 0 2 AX24002 Disaster Management 2 0 0 2 3 AX24003 Constitution of India 2 0 0 0 0 2 0 AX24004 0 4 நற்றமிழ்இலக்கியம்

HoDBOs Chairman

LIST OF OPEN ELECTIVES FOR PG PROGRAMMES

SL.NO	COURSE	COURSE TITLE]	RIOI PER ÆEK		TOTAL CONTACT	CREDITS
520.10	CODE		L	Т	С	PERIODS	
1	OCE24001	Integrated Water Resources Management	3	0	0	3	3
2	OCE24002	Water, Sanitation and Health	3	0	0	3	3
3	OCE24003	Principles of Sustainable Development	3	0	0	3	3
4	OCE24004	Environmental Impact Assessment	3	0	0	3	3
5	OIC24001	Block chain Technologies	3	0	0	3	3
6	OIC24002	Deep Learning	3	0	0	3	3
7	OBA24001	Sustainable Management	3	0	0	3	3
8	OBA24002	Micro and Small Business Management	3	0	0	3	3
9	OBA24003	Intellectual Property Rights	3	0	0	3	3
10	OBA24004	Ethical Management	3	0	0	3	3
11	ET24003	IoT for Smart Systems	3	0	0	3	3
12	ET24002	Machine Learning and Deep Learning	3	0	0	3	3
13	PX24010	Renewable Energy Technology	3	0	0	3	3
14	PS24003	Smart Grid	3	0	0	3	3
15	CP24007	Security Practices	3	0	0	3	3
16	MP24002	Cloud Computing Technologies	3	0	0	3	3
17	IF24001	Design Thinking	3	0	0	3	3
18	MU24001	Principles of Multimedia	3	0	0	3	3
19	DS24001	Big Data Analytics	3	0	0	3	3
20	NC24001	Internet of Things and Cloud	3	0	0	3	3
21	MX24001	Medical Robotics	3	0	0	3	3
22	VE24001	Embedded Automation	3	0	0	3	3
23	CX24001	Environmental Sustainability	3	0	0	3	3
24	TX24001	Textile Reinforced Composites	3	0	0	3	3
25	NT24001	Nano composite Materials	3	0	0	3	3
26	BY24001	IPR, Biosafety and Entrepreneurship	3	0	0	3	3

HoD/BOS Chairman

Subject Code	Subject Name	Category	L	T	P	C
MA24101	ADVANCED NUMERICAL METHODS	FC	4	0	0	4
Course Objectiv	ves:					
	ariousnumericaltechniquestosolvelinearandnon- lental equations.	linearalgebrai	icanc			
To compa methods.	are ordinary differential equations by finite diffe	rence and col	locat	ion		
 To establ 	ish finite difference methods to solve Parabolic a	and hyperboli	c equ	ıatio	ns.	
To establ	ish finite difference method to solve elliptic part	ial differentia	l equ	atio	ns.	
To provide equations	de basic knowledge infinite elements method in	solving parti	al di	ffere	ntial	

********* * 1:	T CENT LEG POYLETIONS	10
	EGEDIUIO EQUITIONS	12
	ar equations: Gauss elimination method - Pivoting techniques - Thom	
~	diagonal system - Jacobi, Gauss Seidel, SOR iteration methods - Condition	
~	- Systems of nonlinear equations : Fixed point iterations, Newton's method	ıd,
Eigenvalue prob	lems: Power method and Given's method.	
UNIT – II O	RDINARY DIFFERENTIAL EQUATIONS	12
Runge - Kutta n	nethods for system of IVPs - Numerical stability of Runge - Kutta method	_
Adams - Bashfo	orth multistep method, Shooting method, BVP: Finite difference method	d,
	hod and orthogonal collocation method.	
		12
P	ARTIAL DIFFERENTIAL EQUATIONS	
	ions: Explicit and implicit finite difference methods - Weighted avera	ge
	Dirichlet's and Neumann conditions - Two dimensional parabolic equations	
1 1	rst order hyperbolic equations – Method of numerical integration alon	
	Wave equation: Explicit scheme – Stability.	
		12
	sson's equations in a rectangular region: Five point finite difference scheme	es,
	ative methods, Dirichlet's and Neumann conditions – Laplace equation in pol	
	ite difference schemes – Approximation of derivatives near a curved bounda	
while using a squ		
		12
	e element method: Weak formulation, Weighted residual method - Sha	pe
	near and triangular element – Finite element method for two point boundar	-
	Laplace and Poisson equations.	
, arae problems,	Total Contact Hours:	60
	Total Contact Hours	00

Course Outcomes:	Upon completion of the course students should be able to:
CO1	Solve an algebraic or transcendental equation, linear system of equations and differential equations using an appropriate numerical method.
CO2	Solving the initial boundary value problems and boundary value problems using finite difference and finite element methods.
CO3	Solving parabolic and hyperbolic partial differential equations by finite difference methods.
CO4	Compute solution of elliptic partial differential equations by finite difference methods.

HoDABOS Chairman

CO5	Selection of appropriate numerical methods to solve various types of problems in engineering and science in consideration with the minimum
603	number of mathematical operations involved accuracy requirements and available computational resources.

	tbooks:
1.	Burden, R.L., and Faires, J.D., "Numerical Analysis - Theory and Applications",
	9 th Edition, Cengage Learning, New Delhi, 2016.
2.	Gupta S.K., "Numerical Methods for Engineers", 4 th Edition, New Age Publishers, 2019.
3.	JainM.K., IyengarS.R., Kanchi M.B., Jain, "Computational Methods for Partial
	Differential Equations", New Age Publishers ,1993.

Re	ference books/other materials/web resources:
1.	Sastry, S.S., "Introductory Methods of Numerical Analysis", 5 th Edition, PHILearning, 2015.
2.	SaumyenGuhaandRajeshSrivastava,"NumericalmethodsforEngineeringandScience",Oxford
	Higher Education, New Delhi, 2010.
3.	Smith, G. D., "Numerical Solutions of Partial Differential Equations: Finite Difference
	Methods", Clarendon Press,1985.

			CO-PO	Mapping			CO	-PSO Mapping		
PO & PSO / CO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO:	
CO1	3	2	2	1			2			
CO2	3	3	2	2			2			
CO3	3	3	3	2	1		2	2		
CO4	3	2	3	2			2	2		
CO5	3	3	3	3	1		3	2	1	
Average:	3	2.6	2.6	2	0.4		2.2	1.2	0.2	

HoD/BOS Chairman

Subject Code	Subject Name	Category	L	T	P	C
TE24101	ADVANCED HEAT TRANSFER	FC	4	0	0	4

Course Objectives:

- To impart knowledge on conduction heat transfer associated with radiation.
- To impart knowledge on the turbulent forced convective heat transfer.
- To impart knowledge on the significance of Phase Change Heat Transfer and Mass Transfer.
 - To teach the heat exchanger design aspects including compact heat exchangers.
 - To impart knowledge on Mass transfer as an engineering phenomenon.

UNIT - I CONDUCTION AND RADIATION HEAT TRANSFER 12 One dimensional energy equations and boundary condition - three-dimensional heat conduction equations - extended surface heat transfer- various pin profiles- pin optimization -Transient conduction-- conduction with moving boundaries - radiation in gases and vapour. Gas radiation and radiation heat transfer in enclosures containing absorbing and emitting media – interaction of radiation with conduction and convection. TURBULENT FORCED CONVECTIVE HEAT TRANSFER Momentum and energy equations - turbulent boundary layer heat transfer - mixing length concept - turbulence model - k € model - analogy between heat and momentum transfer -Reynolds, Colburn, Prandtl turbulent flow in a tube - high speed flows. UNIT – III | PHASE CHANGE HEAT TRANSFER AND HEAT EXCHANGER Condensation on bank of tubes - boiling - pool and flow boiling - heat Transfer Enhancement Techniques. UNIT - IV HEAT EXCHANGERS 12 Heat Exchanger – €- NTU approach and design procedure – compact heat exchangers – Plate heat exchangers- Mini and Micro Channel heat exchangers, Heat transfer correlations for specific cases. UNIT - V 12 **MASS TRANSFER** Mass transfer - vaporization of droplets - combined heat and mass transfers applications -Cooling Towers, Evaporative condensers, solar pond, Cooling and dehumidification systems –

Course Outcomes:	Upon completion of the course students should be able to:
CO1	Analyse problems on heat transfer associated with conduction and
COI	convection and radiation through vapours and gases.
CO1	Analyse problems on turbulent heat transfer and also solve high speed
CO2	flow problems.
CO3	Analyse problems on phase change heat transfer.
	Estimate the performance of compact heat exchangers and also
CO4	understand the use of correlations to predict heat transfer from specific
	devices.
	Understand and analyse the mass transfer associated with heat transfer
CO5	in engineering systems.

HoD/Bos Chairman

porous media heat transfer

Principal

Total Contact Hours: 60

Tex	tbooks:
1.	Ghoshdastidar. P.S., Heat Transfer, Oxford University Press, 2004.
2.	Holman.J.P., Heat Transfer, Tata Mc Graw Hill, 2002.
3.	Incropera F.P. and DeWitt. D.P., Fundamentals of Heat & Mass Transfer, John Wiley &
	Sons 2002

Ref	erence books/other materials/web resources:
1.	Nag.P.K., Heat Transfer, Tata McGraw-Hill, 2002.
2.	Ozisik. M.N., Heat Transfer – A Basic Approach, McGraw-Hill Co., 1985.
3.	Yadav, R., Heat and Mass Transfer, Central Publishing House, 1995.

			CO-PO	Mapping			C	O-PSO Mapp	pping		
PO& PSO / CO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3		
CO1	2	1	3				3	2	1		
CO2	2	2	3				3	3	2		
CO3	2	1	3				3	2	3		
CO4	2	2	3				3	3	2		
CO5	2	2	2				3	2	3		
Average:	2	1.6	2.6				3	2.4	2.2		

HoD/BOS Chairman

Subject Code			L	T	P	C
TE24102	ADVANCED THERMODYNAMICS	PCC	3	1	0	4
Course Objectiv	ves:	101				
To achieve	ve an understanding of basic principle and scope	e of thermody	nami	cs.		
 To predict the availability and irreversibility associated with the thermodynamic 						
processes.						
 To analyse the properties of ideal and real gas mixtures and to understand the basic concepts of thermal systems 						
 To evaluate fuel-air cycles using simulation and availability concepts 						
 To apply thermo chemistry and chemical equilibrium in combustion systems 						

UNIT - I THERMODYNAMIC PROPERTY RELATIONS Thermodynamic Potentials, Maxwell relations, Generalized relations for changes in Entroperation of the control of	
	12
Internal Energy and Enthalpy, Generalized Relations for Cp and Cv, Clausius Clapeyr	con
Equation, Joule Thomson Coefficient, Bridgeman Tables for Thermodynamic Relations.	
UNIT – II REAL GAS BEHAVIOUR AND MULTI-COMPONENT SYSTEMS	12
	of
Corresponding States, use of generalized charts for enthalpy and entropy departure, fugac	
coefficient, Lee-Kesler generalized three parameter tables. Fundamental property relations	
systems of variable composition, partial molar properties, Real gas mixtures, Ideal solution	
real gases and liquids, Equilibrium in multi-phase systems, Gibb's phase rule for non-react	ive
components.	
UNIT – III AVAILABILITY ANALYSIS	12
Introduction, Reversible work, Availability, Irreversibility and Second - Law Efficiency fo	r a
closed System and Steady-State Control Volume. Availability Analysis of Simple Cycl	les.
Chemical availability of closed and control volume. Fuel Chemical availability, Evaluation	
the availability of hydrocarbon fuels.	
UNIT – IV FUEL – AIR CYCLES AND THEIR ANALYSIS	12
Ideal Models of Engine Processes, Fuel-Air Cycle Analysis - SI Engine Cycle Simulation,	CI
Engine Cycle Simulation, Results of Cycle Calculations, Availability Analysis of Eng	ine
Processes - Availability Relationships - Entropy changes in Ideal Cycles - Availabil	
Analysis of Ideal Cycles.	
UNIT – V THERMO CHEMISTRY	12
Ideal gas laws and properties of Mixtures, Combustion Stoichiometry, Application of F.	irst
Law of Thermodynamics - Heat of Reaction - Enthalpy of Formation - Adiabatic fla	
temperature. Second law of Thermodynamics applied to combustion - entropy, maxim	
work and efficiency Chemical equilibrium: - Equilibrium constant evaluation Kp&	
Equilibrium composition evaluation of ideal gas and real gas mixtures.	
Total Contact Hours:	60

Course Outcomes:	Upon completion of the course students should be able to:
CO1	Apply the law of thermodynamics to thermal systems.
CO2	Analyse the actual thermodynamic cycles.
CO3	Design and analyse a multi component thermodynamic system.
CO4	Apply the thermodynamics concepts in automotive systems.
CO5	Understand and analyse the combustion of different fuels.

Textbooks:

- 1. Kenneth Wark., J.R, Advanced Thermodynamics for Engineers, McGraw-Hill Inc., 1995.
- **2.** K.Annamalai, I.K.Puri, M.A.Jog, Advanced Thermodynamics Engineering, Second Edition, CRC Press, 2011.
- 3. Advanced Thermodynamics, S.S. Thipse, Narosa Publishing Home Pvt. Ltd., 2013

Reference books/other materials/web resources:

- 1. Yunus A. Cengel and Michael A. Boles, Thermodynamics, McGraw-Hill Inc., 2006.
- 2. B.P. Pundir, I.C. engine combustion and emissions. Bejan, A., Advanced Engineering Thermodynamics, John Wiley and Sons, 1988.
- 3. Holman, J.P., Thermodynamics, Fourth Edition, McGraw-Hill Inc., 1988.

	CO-PO Mapping						CO-PSO Mapping			
PO & PSO / CO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3	
CO1	2		3				3	2	1	
CO2	2	1	3				3	3	2	
CO3	2		3				3	2	3	
CO4	2	1	3				3	3	2	
CO5	2	1	3				3	2	3	
Average:	2	0.6	3				3	2.4	2.2	

Hop/BOS/Chairman

Subject Code	Subject Name	Category	L	T	P	C		
TE24103	ADVANCED FLUID MECHANICS	PCC	3	0	0	3		
Course Objecti	ırse Objectives:							
To under	stand the laws of fluid flow for ideal and visco	us fluids.						
1	sent the real solid shapes by suitable flow patter amics performances.	rns and to anal	yze t	he sa	ame	for		
• To understand the changes in properties in compressible flow and shock expansion.								
 To introduce boundary layer concepts and velocity distributions 								
To analyze compressible flow phenomena								

BASIC EQUATIONS OF FLOW UNIT – I Three dimensional continuity equation - differential and integral forms - equations of motion momentum and energy - Reynolds transport theorem - Navier - Stokes equation -Engineering Applications. POTENTIAL FLOW THEORY UNIT - II Rotational and irrational flows - circulation - vorticity - stream and potential functions forstandard flows and combined flows - representation of solid bodies by flow patters. Pressurdistribution over stationery and rotating cylinders in a uniform flow - magnus effect -Kutta -Zhukovsky theorem. Complex potential functions. Conformal transformation to analyze the flowover flat plate, cylinder, oval body and airfoils. Thin airfoil theory generalized airfoil theory forcambered and flapped airfoils. UNIT – III VISCOUS FLOW THEORY Laminar and turbulent flow - laminar flow between parallel plates - Poiseuille's equation for flowthrough circular pipes. Turbulent flow - Darcy Weisbach equation for flow through circular pipe -friction factor - smooth and rough pipes - Moody diagram - losses during flow through pipes. Pipes in series and parallel – transmission of power through pipes. UNIT – IV BOUNDARY LAYER CONCEPT Boundary Layer - displacement and momentum thickness - laminar and turbulent boundary layers in flat plates - velocity distribution in turbulent flows in smooth and rough boundaries laminar sub layer. 9 UNIT - V COMPRESSIBLE FLUID FLOW One dimensional compressible fluid flow – flow through variable area passage – nozzles and diffusers – fundamentals of supersonics – normal and oblique shock waves and calculation of flow and fluid properties over solid bodies (like flat plate, wedge, diamond) using gas tables. **Total Contact Hours: 45**

Course Outcomes:	Upon completion of the course students should be able to:
	After the completion of the syllabus students able to familiarized about
CO1	the ideal and viscous fluid flow, boundary layer concepts and changes
	in properties in compressible flow and shock expansion.
CO2	Analyze potential flows using stream and potential functions, and apply
COZ	conformal mapping to solve flow problems around basic geometries.
CO3	Solve laminar and turbulent flow problems in pipes and channels using
COS	analytical and empirical relations including friction factor and losses.
604	Evaluate boundary layer properties and velocity profiles over smooth
CO4	and rough surfaces under laminar and turbulent conditions.
COF	Analyze compressible fluid flows and apply shock wave theory and gas
CO5	tables to compute fluid properties in nozzles and around solid bodies.

HoD/BOS/Chairman

Textbooks:

- 1. Anderson J.D., Fundamentals of Aerodynamics, McGraw Hill, Boston, 2001.
- 2. Bansal R.K., Fluid Mechanics, Saurabh and Co., New Delhi, 1985.
- 3. Houghten E.L. and Carruthers N.B., Aerodynamics for Engineering Students, Arnold Publishers, 1993.

Reference books/other materials/web resources:

- 1. Kumar K.L., Engineering Fluid Mechanics, Eurasia Publishing House, New Delhi, 2002.
- 2. Munson B.R., Young D.F. and Okiisi, T.H., Fundamentals of Fluid Mechanics, John Wiley and Sons Inc., NewYork, 1990.
- 3. Schlichting H., Boundary layer theory, Mc Graw Hill Book Company, 1979.

	CO-PO Mapping					CO-PSO Mapping			
PO & PSO / CO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3
CO1	3		3		2	2	3	2	1
CO2	3		3		2	2	2	3	2
CO3	2		3		2	2	3	3	1
CO4	3		2		3	1	3	2	1
CO5	2		3		2	2	2	2	3
Average:	2.6		2.8		2.2	1.8	2.6	2.4	1.6

HoD/BOS Chairman

Subject Code	Subject Name	Category	L	T	P	C
RM24101	RESEARCH METHODOLOGY AND IPR	RMC	2	0	0	2
Course Objectives:						
To introduce the fundamentals of research design and methodologies						
To develop skills in data collection and preparation						
To apply data analysis methods and effectively communicate research findings						
To provide foundational knowledge on Intellectual Property Rights						
To explain the patenting process and its practical applications						

UNIT – I	RESEARCH DESIGN		6
Overview of	research process and design, Use of Secondary a	nd exploratory data to ans	wer
the research	question, Qualitative research, Observation studies,	Experiments and Surveys.	
UNIT – II	DATA COLLECTION AND SOURCES		6
Measuremen	ts, Measurement Scales, Questionnaires and Instrur	nents, Sampling and method	ds.
Data - Prepar	ing, Exploring, examining and displaying.	-	
UNIT – III	DATA ANALYSIS AND REPORTING		6
Overview o	f Multivariate analysis, Hypotheses testing ar	d Measures of Associat	ion.
Presenting Ir	sights and findings using written reports and oral p	resentation.	
UNIT – IV	INTELLECTUAL PROPERTY RIGHTS		6
Intellectual F	roperty - The concept of IPR, Evolution and devel	opment of concept of IPR, I	PR
development	process, Trade secrets, utility Models, IPR & Bio	diversity, Role of WIPO	and
	establishments, Right of Property, Common rule		and
Features of I	PR Agreement, Trademark, Functions of UNESCO	in IPR maintenance.	
UNIT – V	PATENTS		6
Patents - ol	pjectives and benefits of patent, Concept, featur	es of patent, Inventive s	tep,
	, Types of patent application, process E-filling, E		
patent, Revo	ocation, Equitable Assignments, Licences, Licens	sing of related patents, pa	tent
agents, Regis	stration of patent agents.		
		Total Contact Hours	: 30

Course Outcomes:	Upon completion of the course students should be able to:		
CO1	Understand and apply different types of research designs and qualitative research methods.		
CO2	Develop and implement effective data collection instruments and sampling methods for various research scenarios.		
Analyze data using appropriate methods and present research fine clearly in written and oral formats.			
CO4	Demonstrate understanding of Intellectual Property Rights and their global implications in research and innovation.		
CO5	Apply knowledge of patent systems, procedures, and legal frameworks relevant to innovation and research protection.		

Text	Textbooks:					
1.	Cooper Donald R, Schindler Pamela S and Sharma JK, "Business Research Methods",					
	Tata McGraw Hill Education, 11e (2012).					
2.	Catherine J. Holland, "Intellectual property: Patents, Trademarks, Copyrights, Trade					
	Secrets", Entrepreneur Press, 2007.					
3.	David Hunt, Long Nguyen, Matthew Rodgers, "Patent searching: tools &					
	techniques", Wiley, 2007.					

Refe	erence books/other materials/web resources:
1.	The Institute of Company Secretaries of India, Statutory body under an Act of
	parliament, "Professional Programme Intellectual Property Rights, Law and practice"
	September 2013.
2.	C.R. Kothari, Research Methodology: Methods and Techniques New Age International,
	2019
3.	Uma Sekaran, Roger Bougie, Research Methods for Business: A Skill-Building Approach
	Wiley, 2016.

	CO-PO Mapping						CO-PSO Mapping		
PO & PSO / CO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3
CO1	3		3		2	2	3	2	1
CO2	3 =		3		2	2	3	2	1
CO3	2		3		2	2	3	2	2
CO4	3		2		3	1	2	3	3
CO5	2		3		2	2	1	3	3
Average:	2.6		2.8		2.2	1.8	2.4	2.4	1.8

HoD/BOS/Chairman

SUBJECT CODE	SUBJECT NAME	Category	L	Т	P	С
TE24111	THERMAL ENGINEERING	PCC		^	4	2
TE24111	LABORATORY	PCC	U	U	4	4

COURSE OBJECTIVES:

• To conduct experiments on various Thermal Engineering devices to study the Performance and its applications.

LIST OF EXPERIMENTS

60

- 1. Performance and emission characteristics of multi cylinder Spark Ignition and Compression Ignition engines using alternate fuels.
- 2. Thermal performance of variable compression ratio engines.
- 3. Thermal analysis of natural / forced draught cooling towers.
- 4. Thermal analysis of heat pumps systems.
- 5. Experimental studies on vapour compression refrigeration systems using natural refrigerants
- 6. Overall performance of solar water heating system.
- 7. Physical, Chemical and thermal Properties of any liquid and gas fuels.
- 8. Experimental analysis of a Boiler.
- 9. Calibration of Temperature sensors (RTD / any thermocouple)
- 10. Calibration of Pressure sensors
- 11. Experimental studies on axial / centrifugal fan characteristics

	TOTAL: 60 PERIODS
LEARNING OUTCOMES:	
At the end of the course, learners will be able	
CO1:Know the various alternate fuels are available for IC engines	
CO2: Understand the thermodynamic relations for thermal engineerin	g devices.
CO3: Understand the working principle of different renewable energy	sources.
CO4: Measure the properties of different fuels	

QT	Y	
1	Single cylinder / multi cylinder Automotive Engine with data acquisition system	1
2	Flue gas analyzer	1
3	Smoke meter	1
4	Single cylinder variable Compression ratio petrol engine	1
5	Single cylinder variable Compression ratio Diesel engine	1
6	Cooling tower test rig	1
7	Refrigeration cum Heat Pump test rig	1
8	100 LPD Solar flat plate water heater test rig	1
9	Pyrometer	1
10	Redwood / Saybolt viscometer	1
11	Bomb calorimeter apparatus	1
12	Gas calorimeter	1
13	Cloud & Pour point apparatus	1
14	IBR / Non-IBR Boiler test rig	1

15	Fan test rig	1
16	Pressure Calibrator	1
17	Temperature Calibrator	1

			CO-PO	CC	CO-PSO Mapping				
PO & PSO / CO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3
CO1	3		3	3	2	2	3	2	2
CO2	3		2	3	2	3	3	3	2
CO3	3		2	2	2	2	3	3	2
CO4	2		2	2	2	1	2	3	3
CO5	2		3	2	2	2	·3	2	3
Average:	2.6		2.4	2.4	2.2	2	2.8	2.6	2.4

HoD/BOS/Chairman

Subject Code	Code Subject Name		L T		' P	C
TE24201	INSTRUMENTATION FOR THERMAL ENGINEERING	PCC	3	0	0	3
Course Objectiv	ves:					
To classi	fy various measuring instruments.					
To catego	ories temperature sensors and their applications	n measureme	nt.			
To outlin	e the advancements in pressure and volume mea	surements.				
	re the various measurement techniques for therm		rope	rties		
To comp	are the different data acquisition systems.					

UNIT - I **MEASUREMENT CHARACTERISTICS** Instrument Classification, Characteristics of Instruments - Static and dynamic, experimental error analysis, Systematic and random errors, Statistical analysis, Uncertainty, Experimental planning and selection of measuring instruments, Reliability of instruments. UNIT - II TEMPERATURE MEASUREMENT Temperature, Types, materials, Accuracy - Selection of Temperature sensors - Effect of length of sensor on temperature measurements- calibration of thermocouple, RTD's & Thermistors-Standards for temperature measurement - Cryogenic & High Temperature measurement techniques. UNIT - III PRESSURE FLOW & VOLUME MEASUREMENTS Pressure Sensors: Types & materials - piezoelectric transducers- calibration of pressure sensors-selection of pipes & fittings for pressure sensors. Volume sensors: Standard volumetric flask- Types, Density measurement instruments for liquids & gases. Flow Sensors: Caroli's mass flow measurements - flow measurements for water, gases, other oils & other chemicals. UNIT - IV MEASUREMENT OF THERMO PHYSICAL PROPERTIES Thermal Conductivity measurement of solids - liquids & gases- Sensors & calibration methods- Thermal conductivity of microbar nano composites - Specific heat of liquids, solids through DSC Analysis - viscosity measurement of Newtonian & non-Newtonian fluids through rheological analysis. UNIT - V **DATA ACQUISITION SYSTEM** Data acquisition systems, Evolution of SCADA, Communication technologies, Monitoring and supervisory functions, SCADA applications in Utility Automation, Industries - SCADA System Components: Schemes- Remote Terminal Unit (RTU), Intelligent Electronic Devices

Course Outcomes:	Upon completion of the course students should be able to:
CO1	Infer the role of uncertainty analysis in measuring instruments.
CO2	Select the appropriate temperature sensors based on specific applications.
CO3	Identify the suitable sensors for pressure and volume measurements.
CO4	Evaluate thermos physical properties of media.
CO5	Appraise the advantages of data acquisition systems.

(IED), Communication Network, SCADA Server, SCADA/HMI Systems Various SCADA

architectures.

Principal

Total Contact Hours: 45

Subject Code	Subject Name	Category	L	T	P	C
IC24201	COMPUTATIONAL FLUID DYNAMICS	PCC	3	0	0	3

Course Objectives:

- This course aims to introduce numerical modeling and its role in the field of heat, fluid flow
 and combustion. It will enable the students to understand the various Discretization methods
 and solving methodologies and to create confidence to solve complex problems in the field of
 heat transfer and fluid dynamics.
- To develop finite volume discretised forms of the governing equations for diffusion processes.
- To develop finite volume discretised forms of the convection-diffusion processes.
- To develop pressure-based algorithms for flow processes.
- To introduce various turbulence models, Large Eddy Simulation and Direct Numerical Simulation.

UNIT – I GOVERNING DIFFERENTIAL EQUATIONS AND DISCRETISATION TECHNIQUES

9

Basics of Heat Transfer, Fluid flow – Mathematical description of fluid flow and heat transfer – Conservation of mass, momentum, energy and chemical species - Classification of partial differential equations – Initial and Boundary Conditions – Discretization techniques using finite difference methods – Taylor's Series - Uniform and non-uniform Grids, Numerical Errors, Grid Independence Test.

UNIT – II DIFFUSION PROCESSES: FINITE VOLUME METHOD

9

Steady one-dimensional diffusion, Two- and three-dimensional steady state diffusion problems, Discretization of unsteady diffusion problems – Explicit, Implicit and Crank-Nicholson's schemes, Stability of schemes.

UNIT – III | CONVECTION-DIFFUSION PROCESSES: FINITE VOLUME | METHOD

9

One dimensional convection – diffusion problem, Central difference scheme, upwind scheme – Hybrid and power law discretization techniques – QUICK scheme.

UNIT – IV | FLOW PROCESSES: FINITE VOLUME METHOD

9

Discretization of incompressible flow equations – Pressure based algorithms, SIMPLE, SIMPLER & PISO algorithms.

UNIT – V TURBULENCE MODELS

9

Turbulence – RANS equation - Algebraic Models, One equation model, Two equation models – k & standard k – ϵ model, Low Reynold number models of k- ϵ , Large Eddy Simulation (LES), Direct Numerical Simulation (DNS) - Introduction. Solving simple cases using standard CFD codes.

Total Contact Hours: 45

Course Outcomes:	Upon completion of the course students should be able to:
CO1	Infer the role of uncertainty analysis in measuring instruments.
CO2	Select the appropriate temperature sensors based on specific applications.
CO3	Identify the suitable sensors for pressure and volume measurements.
CO4	Evaluate thermos physical properties of media.
CO5	Appraise the advantages of data acquisition systems.

Text	tbooks:
1.	Holman J.P., Experimental methods for engineers, McGraw-Hill, 2012.
2.	Barnery, Intelligent Instrumentation, Prentice Hall of India, 2010.
3.	Bolton.W, Industrial Control & Instrumentation, Universities Press, Second Edition,
	2001.

Reference books/other mater	ials/web	resources:
-----------------------------	----------	------------

- 1. John G Webster, The measurement, Instrumentation and sensors Handbook, CRC and IEE Press, 2014.
- 2. Morris A.S, Principles of Measurements and Instrumentation Prentice Hall of India, 2004.
- 3. Nakra, B.C., Choudhry K.K., Instrumentation, Measurements and Analysis Tata McGraw Hill, New Delhi, 2nd Edition 2003.

	CO-PO Mapping						CO-PSO Mapping			
PO & PSO / CO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3	
CO1	1	1		1			3	3	1	
CO2	2		2	1	2	1	3	3	1	
CO3	2		2	1	2	1	3	2	2	
CO4	2		2	2	2	1	3	3	1	
CO5	2		1	1	2		2	2	3	
Average:	1.8	1	1.4	1.2	1.6	0.6	2.8	2.6	1.6	

Hob/BOS Chairman

COLL)

Tex	tbooks:
1.	Holman J.P., Experimental methods for engineers, McGraw-Hill, 2012.
2.	Barnery, Intelligent Instrumentation, Prentice Hall of India, 2010.
3.	Bolton.W, Industrial Control & Instrumentation, Universities Press, Second Edition,
	2001.

Ref	erence books/other materials/web resources:
1.	John G Webster, The measurement, Instrumentation and sensors Handbook, CRC and
	IEE Press, 2014.
2.	Morris A.S, Principles of Measurements and Instrumentation Prentice Hall of India,
	2004.
3.	Nakra, B.C., Choudhry K.K., Instrumentation, Measurements and Analysis Tata McGraw
	Hill, New Delhi, 2nd Edition 2003.

			CO-PSO Mapping						
PO & PSO / CO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3
CO1	1	1		1			3	3	1
CO2	2		2	1	2	1	3	3	2
CO3	2		2	1	2	1	3	3	2
CO4	2		2	2	2	1	3	3	3
CO5	2		1	1	2		2	3	3
Average:	1.8	1	1.4	1.2	1.6	0.6	2.8	3	2.2

HoD/BO Chairman

Subject Code	Subject Name	Category	L	T	P	C
TE24202	FUELS, COMBUSTION AND	PCC	4	0	0	4
	EMISSION CONTROL					
Course Objectives	•					
To understa	nd the types of fuels.					
To compare	the fuels in specific point					
To understa	nd the principles of combustion and combu	stion equipmen	t's.			
To understa	nd the thermodynamic process behind the	combustion.				
To Identify	the level of emission standards					

UNIT - I SOLID FUELS

9

Solid Fuel Types - Coal Family - Properties - Calorific Value - ROM, DMMF, DAF and Bone Dry Basis - Ranking - Bulk & Apparent Density - Storage - Washability - Coking & Caking Coals - Renewable Solid Fuels - Biomass - Wood Waste - Agro Fuels - Manufactured Solid Fuels.

UNIT – II LIQUID AND GASEOUS FUELS

9

Liquid Fuel Types - Sources - Petroleum Fractions - Classification - Refining - Properties of Liquid Fuels - Calorific Value, Specific Gravity, Flash & Fire Point, Octane Number, Cetane Number etc., - Alcohols - Tar Sand Oil - Liquefaction of Solid Fuels. Gaseous Fuel Classification - Composition & Properties - Estimation of Calorific Value - Gas Calorimeter. Rich & Lean Gas - Wobbe Index - Natural Gas - Dry & Wet Natural Gas - Stripped NG - Foul & Sweet NG - LPG - LNG - CNG - Methane - Producer Gas - Gasifier - Water Gas - Town Gas - Coal Gasification - Gasification Efficiency - Non - Thermal Route - Biogas - Digesters - Reactions - Viability - Economics.

UNIT – III | COMBUSTION: STOICHIOMETRY & KINETICS

9

Stoichiometry – Mass Basis & Volume Basis – Excess Air Calculation – Fuel & Flue Gas Compositions - Calculations – Rapid Methods – Combustion Processes – Stationary Flame – Surface or Flameless Combustion – Submerged Combustion – Pulsating & Slow Combustion Explosive Combustion. Mechanism of Combustion – Ignition & Ignition Energy – Spontaneous Combustion – Flame Propagation – Solid, Liquid & Gaseous Fuels Combustion – Flame Temperature – Theoretical, Adiabatic & Actual – Ignition Limits – Limits of Inflammability. Thermo Chemistry - Equilibrium combustion products. Low temperature combustion products – High temperature combustion products.

UNIT – IV COMBUSTION EQUIPMENTS

9

Coal Burning Equipments – Types – Pulverized Coal Firing – Fluidized Bed Firing – Fixed Bed & Recycled Bed – Cyclone Firing – Spreader Stokers – Vibrating Grate Stokers – Sprinkler Stokers, Traveling Grate Stokers. Oil Burners – Vaporizing Burners, Atomizing Burners – Design of Burners. Gas Burners – Atmospheric Gas Burners – Air Aspiration Gas Burners – Burners Classification according to Flame Structures – Factors Affecting Burners & Combustion.

UNIT – V EMISSION CONTROL METHODS

9

Emissions - Emission index - Corrected concentrations - Control of emissions for premixed and non-prefixed combustion. Flue gas Desulphurization, Coal Beneficiation, Coal Blending, Efficiency Improvement Methods (CO2 reduction)— Super critical boilers, Integrated Gasification Combined Cycle Power Plant, Carbon Capture & Storage (CCS)

Total Contact Hours: 45

Course Outcomes:	Upon completion of the course students should be able to:
CO1	Identify to enable the fuels used for different purposes.
CO2	Examine the fuels at different conditions.
CO3	Summarize the fuels and its combustion levels.
CO4	Select the correct Equipments on combustion techniques.
CO5	Illustrate the emission control at a standard rate.

Text	tbooks:
1.	B.I. Bhatt and S.M. Vora, Stoichiometry, 2nd Edition, Tata Mcgraw Hill, 2010.
2.	Blokh A.G., Heat Transfer in Steam Boiler Furnace, Hemisphere Publishing Corpn,
	1988.
3.	Civil Davies, Calculations in Furnace Technology, Pergamon Press, Oxford, 1966.

Ref	erence books/other materials/web resources:
1.	Holman J.P., Thermodynamics, Fourth Edition, McGraw-Hill Inc., 1988.
2.	Samir Sarkar, Fuels & Combustion, 2nd Edition, Orient Longman, 1990.
3.	Sharma SP., Mohan Chander, Fuels & Combustion, Tata Mcgraw Hill, 1984.

			CO-PSO Mapping						
PO & PSO / CO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO:
CO1	1		2	1		3	3	2	1
CO2	1		2	2		1	3	3	2
CO3	1		2	1		1,	3	3	2
CO4			2	1		1	2	3	3
CO5				-			2	2	3
Average:	1		1.6	1		1.2	2.6	2.6	2.2

HoD/BOS Chairman

SUBJECT CODE	SUBJECT NAME	Category	L	T	P	C
TE24211	THERMAL SYSTEMS SIMULATION	PCC	0	0	4	2
1 22-7211	LABORATORY	100	•		٠.	_

COURSE OBJECTIVES:

- To learn the modeling and simulation analysis of various thermal engineering application using analysis software.
- To educate the students about calibration and its essentiality in thermal systems.

LIST OF EXPERIMENTS

60

- 1. Heat exchanger analysis NTU method
- 2. Heat exchanger analysis LMTD method
- 3. Convection heat transfer analysis Velocity boundary layer.
- 4. Convection heat transfer analysis Internal flow
- 5. Radiation heat transfer analysis Emissivity
- 6. Critical radius of insulation
- 7. Lumped heat transfer analysis
- 8. Conduction heat transfer analysis
- 9. Condensation heat transfer analysis

TOTAL: 60 PERIODS

LEARNING OUTCOMES:

At the end of the course, learners will be able

CO1: Knowledge in various heat transfer simulation study on different thermal engineering applications by using analysis software.

CO2: Analyze the critical/influential properties of thermal systems

DYNAMIC LINKING OF MAT LAB AND REF PROP SOFTWARE SIMPLE CFD PROBLEMS FOR PRACTICE

NOTE: The above exercises are only guidelines to maintain the standard for teaching and Conduct of examination.

SIN	IULATION LAB – REQUIREMENT:
1	Software - Modeling software like ProE, Gambit, Ansys, etc Analysis software like
	Ansys, fluent, CFX, etc
	Equation solving software like Matlab, Engg equation solver
2	Every students in a batch must be provided with a terminal
3	Hardware are compatible with the requirement of the above software.

PO & PSO / CO			СО-РО	Mapping			C	O Mapping			
	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3		
CO1	1	2	2	3	2	1	3	2	2		
CO2	1	2	2	3	2	1	3	3	2		
Average:	1	2	2	3	2	1	3	2.5	2		

Hob BOs Chairman

Subject Code	Subject Name	Category	L	Т	P	С
TE24212	TECHNICAL SEMINAR - I	EEC	0	0	2	1

COURSE OBJECTIVES:

- To Enhance the ability of self-study
- To Improve presentation and communication skills
- To Increase the breadth of knowledge.

GUIDELINES

- 1. The student is expected to present a seminar in one of the current topics in the field of Thermal Engineering related issues / technology.
- 2. The seminar shall be of 30 minutes duration and give presentation to the Seminar Assessment Committee (SAC).
- 3. A faculty guide is to be allotted and he / she will guide and monitor the progress of the student and maintain attendance also.
- 4. In a session of three periods per week, 4 students are expected to present the seminar.
- 5. Students are encouraged to use various teaching aids such as power point presentation and demonstrative models.
- 6. Students are required to prepare a seminar report in the prescribed format given by the Department.

TOTAL: 30 PERIODS

LEARNING OUTCOMES:

At the end of the course, learners will be able

CO1: Identify and choose appropriate topic of relevance.

CO2: Assimilate literature on technical articles of specified topic and develop Comprehension.

CO3: Prepare technical report.

CO4: Design, develop and deliver presentation on specified technical topic

EVALUATION

Technical Seminar I evaluation is based on Regulations of Post graduate programmes of Anna University.

			CO-PO	Mapping			CC	O-PSO Map	ping
PO & PSO / CO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3
CO1	1			1	2	1	3	2	2
CO2	1	1		1	1		3	3	2
CO3	1	1		1			2	3	2
C04	1	2			3	3	2	2	2
Average:	0.8	0.8		0.6	1.2	0.8	2.5	2.5	2

HoD/BOS Chairman

Subject Code	Subject Name	Category L T		P	C	
TE24301	DESIGN AND OPTIMIZATION OF THERMAL ENERGY SYSTEMS	PCC	3	0	0	3
Course Objectiv						
	basic principles underlying pumping, heat excharge in design of thermal systems.	angers; model	ing a	nd		
To devel	op representational modes of real processes and	systems.				
To optim	ization concerning design of thermal systems.					
	ze dynamic behavior and stability of thermal systansforms.	stems using co	ntro	l the	ory a	ınd
 To apply simulation and optimization methods in real-world thermal system case studies including uncertainty and trade-off analysis. 						

UNIT - I DESIGN CONCEPTS	9
Design Principles, Workable Systems, Optimal Systems, Matching of System Component	ts,
Economic Analysis, Depreciation, Gradient Present Worth factor, modelling overview -	
and steps in model development - Examples of models - curve fitting and regression anal	
UNIT – II MODELLING AND SYSTEMS SIMULATION	10
Modelling of thermal energy systems - heat exchanger - solar collectors - distilla	tion -
rectification turbo machinery components - refrigeration systems - information flow diag	
solution of set of nonlinear algebraic equations - successive substitution - Newton Raphson	
method- examples of thermal systems simulation	
UNIT – III OPTIMIZATION	10
Objectives - constraints, problem formulation - unconstrained problems - necessar	y and
sufficiency conditions. Constrained optimization - Lagrange multipliers, const	rained
variations, Linear Programming - Simplex tableau, pivoting, sensitivity analysis -	New
generation optimization techniques – examples.	
UNIT – IV DYNAMIC BEHAVIOUR	8
Steady state Simulation, Laplace Transformation, Feedback Control Loops, Stability Ana	ılysis,
Non-Linearities.	
UNIT - V APPLICATIONS AND CASE STUDIES	8
Case studies of optimization in thermal systems problems- Dealing with uncertainty-	
probabilistic techniques - Trade-offs between capital and energy using Pinch analysis	
Total Contact Hour	rs: 45

Course Outcomes:			
CO1	On successful Completion of this course the student will be understand		
	modeling and optimization of Thermal systems.		
CO2	Develop mathematical models and perform simulations for heat		
CO2	exchangers, solar collectors, distillation, and refrigeration systems.		
002	Formulate and solve constrained and unconstrained optimization		
CO3	problems using classical and modern optimization methods.		
604	Analyze dynamic behavior and stability of thermal systems through		
CO4	Laplace transforms and feedback control concepts.		
CO5	Evaluate case studies to apply optimization and simulation techniques		
	considering uncertainty and trade-offs in thermal systems.		

HoD/BOS/Chairman

Textbooks:			
1.	B.K.Hodge, Analysis and Design of Thermal Systems, Prentice Hall Inc., 1990.		
2.	Bejan A., George Tsatsaronis, Michael J. Moran, Thermal Design and Optimization, Wiley ,1996.		
3.	D.J. Wide, Globally Optimal Design, Wiley-Interscience, 1978.		

Ref	Reference books/other materials/web resources:				
1.	Kapur J. N., Mathematical Modelling, Wiley Eastern Ltd, New York, 1989.				
2.	Rao S. S., Engineering Optimization Theory and Practice, New Age Publishers, 2000.				
3.	Stoecker W. F., Design of Thermal Systems, McGraw Hill Edition, 1989.				

	CO-PO Mapping						CO-PSO Mapping			
PO & PSO / CO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3	
CO1	1		2	1		3	3	1	2	
CO2	1		2	2		1	3	2	1	
CO3	1		2	1		1	2	3	2	
CO4			2	1		ŀ	1	3	1	
CO5							2	2	3	
Average:	1		1.6	1		1,2	2.2	2.2	1.8	

Subject Code	Subject Name	Category	L	T	P	С
TE24311	TECHNICAL SEMINAR - II	EEC	0	0	2	1

COURSE OBJECTIVES:

- To enhance the reading ability required for identification of his/her field of interest.
- To develop skills regarding professional communication and technical report writing.
- To establish the fact that student is not a mere recipient of ideas, but a participant in discovery and inquiry.
 - To learn how to prepare and publish technical papers.

GUIDELINES

- 1. The student is expected to present a seminar in one of the current topics in the field Of Thermal Engineering related issues / technology.
- 2. The seminar shall be of 30 minutes duration and give presentation to the Seminar Assessment Committee (SAC).
- 3. The committee shall evaluate the seminar based on the style of presentation, technical context, and coverage of the topic, adequacy of references, depth of Knowledge and the overall quality.
- 4. A faculty guide is to be allotted and he / she will guide and monitor the progress of the student and maintain attendance also.
- 5. Each student has to submit a seminar report in the prescribed format given by the Institution.
- 6. In a session of three periods per week, 4 students are expected to present the Seminar.
- 7. Students are encouraged to use various teaching aids such as power point presentation and demonstrative models.
- 8. It is recommended that the report for Technical Seminar II may be in the form of a technical paper which is suitable for publishing in Conferences / Journals as a review paper.

TOTAL: 30 PERIODS

LEARNING OUTCOMES:

At the end of the course, learners will be able

CO1: Develop the capacity to observe intelligently and propose and defend opinions and ideas with tact and conviction.

CO2: Develop skills regarding professional communication and technical report writing.

CO3: Learn the methodology of publishing technical papers.

EVALUATION

Technical Seminar II evaluation is based on Regulations of Post graduate programmes of Anna University.

		CO-PO Mapping					CO-PSO Mapping			
PO & PSO / CO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3	
CO1	1	1		1	2	1	2	2	2	
CO2	1	1		1	1		2	3	2	
CO3	1	2		1			2	3	2	
Average:	1	0.8		0.6	1.2	0.8	2	2.5	2	

HoD/BOS Chairman

Subject Code	Subject Name	Category	L	Т	P	С
TE24312	PROJECT WORK – I	EEC	0	0	12	6

COURSE OBJECTIVES:

- To improve the skills in reading technical magazines, conference proceedings and Journals.
- To develop the skill of identifying research problems/projects in the field of Thermal Engineering.
- To familiarize with the design and analysis tools required for the project work and plan the experimental platform, if any, required for project work.

GUIDELINES

- 1. Each student has to identify the topic of project related to the field of Thermal Engineering.
- 2. The candidate has to be in regular contact with his guide and the topic of dissertation must be mutually decided by the guide and student
- 3. The topic has to be approved by a review committee constituted by the department.
- 4. The work has to be presented periodically in front of the review committee.
- 5. The preparation of report consisting of a detailed problem statement and a literature review.
- 6. The preliminary results (if available) of the problem may also be discussed in the report.
- 7. The project report should be presented in standard format as provided by the Anna University.

TOTAL: 90 PERIODS

LEARNING OUTCOMES:

At the end of the course, learners will be able

The students would apply the knowledge gained from theoretical and practical courses in solving problems, so as to give confidence to the students to be creative, well planned, organized, coordinated in their project work phase – II.

EVALUATION

Project Work Phase - I evaluation is based on Regulations of Post graduate programmes of Anna University.

			CO-PO	Mapping			C	O-PSO Mappi	ing
PO & PSO / CO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3
CO1	1			1	2	3	2	2	2
CO2	1				1	3	2	3	2
CO3	1				2	3	2	3	2
CO4	1				2	3	2	3	2
CO5	1	=		.3	2		2	3	2
Average:	1			0.8	1.8	2.4	2	2.75	2

HoD/BOS Chairman

Subject Code	SUBJECT NAME	Category	L	T	P	C
TE24411	PROJECT WORK – II	EEC	0	0	24	12

COURSE OBJECTIVES:

- To improve the skills in publishing technical papers in conference proceedings and journals.
- To produce factual results of their applied research idea in the Thermal engineering, from phase I.

GUIDELINES

- 1. Each student has to complete project (phase II) under the guidance of a faculty member, as Specified in Phase I.
- 2. The candidate has to be in regular contact with his guide and the topic of dissertation must be mutually decided by the guide and student
- 3. The topic has to be approved by a review committee constituted by the department.
- 4. The work has to be presented periodically in front of the review committee.
- 5. The candidate has to prepare a detailed project report consisting of introduction of the problem, problem statement, literature review, objectives of the work, methodology (experimental set up or numerical details as the case may be) of solution and results and discussion.
- 6. The report must bring out the conclusions of the work and future scope for the study.
- 7. The project report should be presented in standard format as provided by the Anna University.

TOTAL: 180 PERIODS

LEARNING OUTCOMES:

At the end of the course, learners will be able

The students' would apply the knowledge gained from theoretical and practical courses in solving problems, so as to give confidence to the students to be creative, well planned, organized, coordinated project outcome of the aimed work.

EVALUATION

Project Work Phase - II evaluation is based on Regulations of Post graduate programmes of Anna University.

			CO-PO N	Aapping			C	O-PSO Mappii	ng
PO & PSO / CO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3
CO1	1	1		1	2	3	2	2	2
CO2	1	1			1	3	2	3	2
CO3	1	2			2	3	2	3	2
CO4	1				2	3			
CO5	1	*:		3	2				
Average:	1	0.8		0.8	1.8	2.4	2	2.5	2

Subject Code	Subject Name	Category	L	T	P	C		
TE24001	AIRCRAFT AND JET PROPULSION	PEC	3	0	0	3		
Course Objecti	Course Objectives:							
	 To gain insight on the working principle of rocket engines, different feed systems, propellants and their properties and dynamics of rockets. 							
	 To study the thermodynamics and working principles of various aircraft propulsion systems. 							
	 To analyze performance characteristics and design aspects of aircraft engines including inlets and nozzles. 							
I .	 To learn the fundamentals of rocket propulsion, rocket equations, and multi-stage rocket systems. 							
To under	To understand combustion processes, propellant systems, and heat transfer in rocket							

UNIT – I	GAS DYNAMICS		9				
Wave motion	Wave motion - Compressible fluid flow through variable area devices - Stagnation state Mach						
Number and	Number and its influence and properties, Isentropic Flow, Rayleigh and Fanno Flow.						
Deflagration	and Detonation – Normal shock and oblique shock	waves.					
UNIT – II	UNIT – II THERMODYNAMICS OF AIRCRAFT ENGINES 10						
Theory of Ai	rcraft propulsion - Thrust - Various efficiencies	 Different propulsion systematics 	ems				
-Turboprop -	- Ram Jet - Turbojet, Turbojet with after burne	er, Turbo fan and Turbo sl	haft				
Variable thru	st-nozzles – vector control.						
UNIT – III	PERFORMANCE CHARACTERISTICS OF	F AIRCRAFT ENGINES	10				
Engine - Airc	raft matching - Design of inlets and nozzles - Per	formance characteristics of					
Ramjet, Turb	ojet, Scramjet and Turbofan engines.						
UNIT – IV	ROCKET PROPULSION		8				
Theory of roo	ket propulsion – Rocket equations – Escape and	Orbital velocity – Multi-stag	ging				
of Rockets -	Space missions – Performance characteristics – Lo	sses and efficiencies.					
UNIT – V	UNIT – V ROCKET THRUST CHAMBER 8						
Combustion in solid and liquid propellant classification – rockets of propellants and Propellant							
Injection systems - Non-equilibrium expansion and supersonic combustion - Propellant feed							
Systems – Reaction Control Systems - Rocket heat transfer.							
	Total Contact Hours: 45						

Course Outcomes:	Upon completion of the course students should be able to:
CO1	On successful completion of this course the student will be able to understand the working of different types of Aircraft and Jet propulsion systems and their performance characteristics.
CO2	Describe thermodynamics and operational principles of various aircraft propulsion systems.
CO3	Analyze engine-aircraft matching and evaluate performance characteristics of aircraft engines.
CO4	Calculate rocket propulsion parameters including thrust, escape velocity, and staging efficiencies.
CO5	Understand combustion, propellant feed systems, and thermal aspects in rocket thrust chambers.

thrust chambers.

C- Principal

	tbooks:
1.	Bonney E.A., Zucrow N.J,. Principles of Guided Missile Design, Van Nostranc Co., 1956.
2.	Khajuria P.R. and Dubey S.P., Gas Turbines and Propulsive Systems, Dhanpat Rai
	Publications, 2003.
3.	Mattingly J.D., Elements of Gas turbine Propulsion, McGraw Hill, 1st Edition, 1997.

Ref	erence books/other materials/web resources:
1.	Philip G. Hill and Carl R. Peterson, Mechanics and Thermodynamics of Propulsion, Second
	Edition, Addition – Wesley Publishing Company, New York, 2009.
2.	S.M. Yahya, Fundamentals of Compressible Flow, Third edition, New Age International Pvt Ltd,
	2003.
3.	Zucrow N.J., Principles of Jet Propulsion and Gas Turbines, John Wiley and Sons, New
	York, 1970.

		CO-PO Mapping					CO-PSO Mapping			
PO & PSO / CO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3	
CO1	1		2	1		3	3	2	1	
CO2	1		2	2		1	2	3	1	
CO3	1		2	1		1	2	3	2	
CO4			2	1		1	3	2	1	
CO5				-			1	2	3	
Average:	1		1.6	1		1.2	2.2	2.4	1.6	

Subject Code	Subject Name	Category	L	T	P	C
TE24002	HYDROGEN AND FUEL CELL	DEC	2	0	Λ	2
1 E24002	TECHNOLOGIES	PEC	3	U	U	3

Course Objectives:

- To study in detail on the hydrogen production methodologies, possible applications and various storage options.
- To understand the working principle of a typical fuel cell, its types and to elaborate on its Thermodynamics and kinetics.
- To study the cost effectiveness and eco-friendliness of Fuel Cells.
- To learn about different types of fuel cells and their comparative advantages and disadvantages.
- To analyze the applications, economic viability, and environmental impact of fuel cells and hydrogen energy systems.

UNIT – I	HYDROGEN - BASICS AND PRODUCTION	N TECHNIOUES	9
	physical and chemical properties, salient characteri		en
	ing – water electrolysis – gasification and woody		
	duction – photo dissociation – direct thermal or ca		
UNIT – II	HYDROGEN STORAGE AND APPLICATION		9
Hydrogen sto	rage options – compressed gas – liquid hydrogen -		ge –
	Safety and management of hydrogen. Application		
UNIT - III	FUEL CELLS		9
History – p	rinciple - working - thermodynamics and kir	etics of fuel cell process	s –
	evaluation of fuel cell – comparison on battery Vs	_	
UNIT – IV	FUEL CELL – TYPES		9
Types of fue	el cells – AFC, PAFC, SOFC, MCFC, DMFC,	PEMFC – relative merits	and
demerits.	,		
UNIT – V	APPLICATION OF FUEL CELL AND ECO	NOMICS	9
Fuel cell usa	ge for domestic power systems, large scale power	generation, Automobile, Spa	ace.
Economic an	d environmental analysis on usage of Hydrogen	and Fuel cell. Future trend	s in
fuel cells.			
		Total Contact Hours	: 45

Course Outcomes:	Upon completion of the course students should be able to:
CO1	Know the working of various fuel cells, their relative advantages / disadvantages and hydrogen generation/storage technologies.
CO2	Evaluate hydrogen storage technologies and safety management for various applications.
CO3	Understand the principles and performance characteristics of fuel cells.
CO4	Differentiate between types of fuel cells and assess their suitability for different applications.
CO5	Assess the economic and environmental aspects of fuel cells and hydrogen usage, and predict future trends.

HoD/BOS Chairman

Textbooks:

- 1. Viswanathan B. and Aulice Scibioh.M, Fuel Cells Principles and Applications, Universities Press, 2006.
- 2. Rebecca L. and Busby, Hydrogen and Fuel Cells: A Comprehensive Guide, Penn Well Corporation, Oklahoma, 2005.
- 3. Bent Sorensen (Sørensen), Hydrogen and Fuel Cells: Emerging Technologies and Applications, Elsevier, UK 2005.

Reference books/other materials/web resources:

- 1. Kordesch K. and G.Simader, Fuel Cell and Their Applications, Wiley-Vch, Germany 1996.
- 2. Hart A.B. and G.J.Womack, Fuel Cells: Theory and Application, Prentice Hall, New York Ltd., London 1989.
- 3. Jeremy Rifkin, The Hydrogen Economy, Penguin Group, USA 2002.

			CO-PO	Mapping	23		CO-PSO Mapping			
PO & PSO / CO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3	
CO1	3		3	1	1	2	3	1	1	
CO2	3		3	1	1	2	3	2	1	
CO3	2		2	2		1	2	3	1	
CO4	2		2	1		2	1	. 3	1	
CO5	2		2	1	3	2	1	2	3	
Average:	2.4		2.4	1.2	1	1.8	2	2.2	1.4	

HoD/BOS Chairman

0-0

Subject Code	Subject Name	Category	L	T	P	C
TE24003	ENERGY RESOURCES	PEC	3	0	0	3

Course Objectives:

- To explain concept of various forms of Non-renewable and renewable energy.
- To outline division aspects and utilization of renewable energy sources for both domestics and industrial applications.
- To study the environmental and cost economics of using renewable energy sources compared to fossil fuels.
- To explore biomass resources, conversion technologies, and bio energy applications with emphasis on Indian energy programs.
 - To gain knowledge on ocean, geothermal, and emerging energy sources including hydrogen and fuel cells.

UNIT – I COMMERCIAL ENERGY

9

Coal, Oil, Natural gas, Nuclear power and Hydro - their utilization pattern in the past, present and future projections of consumption pattern - Sector-wise energy consumption —environmental impact of fossil fuels — Energy scenario in India — Growth of energy sector and its planning in India.

UNIT – II SOLAR ENERGY

9

Solar radiation at the earth's surface — solar radiation measurements — estimation of average solar radiation - solar thermal flat plate collectors - concentrating collectors — solar thermal applications - heating, cooling, desalination, drying, cooking, etc — solar thermal electric power plant - principle of photovoltaic conversion of solar energy, types of solar cells — Photovoltaic applications: battery charger, domestic lighting, street lighting, water pumping etc - solar PV power plant — Net metering concept.

UNIT - III WIND ENERGY

9

Nature of the wind – power in the wind – factors influencing wind – wind data and energyestimation – wind speed monitoring - wind resource assessment - Betz limit - site selection - wind energy conversion devices - classification, characteristics, applications – offshore wind energy - Hybrid systems - safety and environmental aspects – wind energy potential and installation in India - Repowering concept.

UNIT – IV BIO-ENERGY

9

Biomass resources and their classification - Biomass conversion processes - Thermo chemical conversion - direct combustion - biomass gasification - pyrolysis and liquefaction - biochemical conversion - anaerobic digestion - types of biogas Plant - applications - alcohol production from biomass - bio diesel production - Urban waste to energy conversion - Biomass energy programme in India.

UNIT – V OTHER TYPES OF ENERGY

9

Ocean energy resources - principle of ocean thermal energy conversion (OTEC) - ocean thermal power plant - ocean wave energy conversion - tidal energy conversion - small hydro - geothermal energy - geothermal power plant - hydrogen production and storage - Fuel cell - principle of working - various types - construction and applications.

Total Contact Hours: 45

Course Outcomes:	Upon completion of the course students should be able to:
CO1	Understand the commercial energy and renewable energy sources.
CO2	Know the working principle of various energy systems.
CO3	Evaluate wind energy potential, design wind energy conversion systems, and understand offshore and hybrid configurations.
CO4	Identify biomass types, conversion methods, and applications of bioenergy including biofuels and waste-to-energy.
CO5	Describe ocean, geothermal, hydrogen energy, and fuel cell technologies and their applications.

HoD/BOS Chairman

Tex	tbooks:
1.	Sukhatme S.P., "Solar Energy", Tata McGraw Hill, 1984.
2.	Twidell J.W. and Weir A., "Renewable Energy Sources", EFN Spon Ltd., 1986.
3.	Kishore V.V.N., "Renewable Energy Engineering and Technology", Teri Press, New Delhi,
	2012

Refe	erence books/other materials/web resources:
1.	Peter Gevorkian, "Sustainable Energy Systems Engineering," McGraw Hill,2007.
2.	reith F. and Kreider J.F., "Principles of Solar Engineering", McGraw-Hill, 1978.
3.	Godfrey Boyle, "Renewable Energy Power for a Sustainable Future", Oxford University
	Press, U.K., 1996.

			CO-PO	Mapping		CO-PSO Mapping				
PO & PSO / CO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3	
CO1	1		2	1		3	1	3	3	
CO2	1		2	2		1	3	2	1	
CO3	1		2	1		1	3	2	1	
CO4			2	1		1	3	2	1	
CO5				-			2	2	2	
Average:	1		1.6	1		1.2	2.4	2.2	1.6	

Subject Code	Subject Name	Category	L	T	P	C
TE24004	ADVANCED INTERNAL COMBUSTION	DEC	2	Δ.	0	2
1 E 24004	ENGINES	PEC	3	v	U	3

Course Objectives:

- To gain insight on the working principle of spark ignition engines and compression ignition engines.
- To study the pollutant formation and its control in IC engines.
- To study the recent technologies adopted in IC engine applications.
- To analyze the properties and applicability of alternative fuels in IC engines.
- To explore advanced IC engine technologies including lean burn, HCCI, stratified charge engines, and diagnostic tools.

UNIT - I SPARK IGNITION ENGINES Spark ignition Engine mixture requirements - Fuel - Injection systems - Monopoint, Multipoint injection, Direct injection - Stages of combustion - Normal and abnormal combustion – factors affecting knock – Combustion chambers. UNIT - II **COMPRESSION IGNITION ENGINES** States of combustion in C.I. Engine – Direct and indirect injection systems – Combustion chambers - Fuel spray behavior - spray structure, spray penetration and evaporation - air motion - Introduction to Turbo charging. UNIT – III POLLUTANT FORMATION AND CONTROL Pollutant – Sources – Formation of carbon monoxide, Unburnt hydrocarbon, NOx, Smoke and Particulate matter - Methods of controlling Emissions - Catalytic converters and Particulate Traps – Methods of measurements and Introduction to emission norms and Driving cycles. **ALTERNATIVE FUELS** Alcohol, Hydrogen, Natural Gas and Liquefied Petroleum Gas- Properties, Suitability, Merits and Demerits as fuels, Engine Modifications. **ROCKET THRUST CHAMBER** Lean Burn Engines – Stratified charge Engines – homogeneous charge compression ignition engines - Plasma Ignition - Measurement techniques - laser Doppler, Anemometry. Use of nano technology in IC Engines.

Course Outcomes:	Upon completion of the course students should be able to:
CO1	On successful completion of this course the student will be able to understand the working principle of IC engines, source of pollution formation and its control and recent trends in IC engines.
CO2	Explain combustion characteristics, fuel spray behavior, and turbocharging in CI engines.
CO3	Identify and control various pollutants formed in IC engines and interpret emission standards.
CO4	Evaluate alternative fuels and suggest appropriate engine modifications.
CO5	Apply knowledge of advanced combustion techniques and measurement tools used in IC engine research.

HoD/BOS/Chairman

Principal

Total Contact Hours: 45

Tex	tbooks:
1.	Duffy Smith, Auto fuel Systems, The Good Heart Willox Company, Inc., 1989.
2.	Heywood, J.B., Internal Combustion Engine Fundamentals, McGraw-Hill, 1988.
3.	K.K. Ramalingam, Internal Combustion Engine fundamentals, Scitech Publications, 2002.

Ref	erence books/other materials/web resources:
1.	Kirpal Singh, Automobile Engineering Vol - I, Standard Publishers, Delhi 2013.
2.	R.B. Mathur and R.P.Sharma, Internal Combustion Engines, Dhanapat Rai
	Publications, 1993.
3.	V. Ganesan, Internal Combustion Engines, II Edition, Tata McGraw-Hill Education, 2002.

			СО-РО	Mapping			C	pping		
PO & PSO / CO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3	
CO1	1		2	1		3	3	2	1	
CO2	1		2	2		1	3	2	2	
CO3	1		2	1		1	2	3	2	
CO4			2	1		1	2	3	1	
CO5				-			1	2	3	
Average:	1		1.6	1		1.2	2.2	2.4	1.8	

Q- Principal

Subject Code	Subject Name	Category	L	Т	P	C
TE24005	CRYOGENIC ENGINEERING	PEC	3	0	0	3
Course Objectiv	ves:					
To give i	ntroductory knowledge of cryogenic Engineeri	ng.				
To impar cryocoole	t knowledge in liquefaction, separation of crycers.	genics gases ar	nd w	orkiı	ng of	
To embar	rk on a research career in Cryogenic Engineeri	ng.				
To under	stand the working of cryogenic refrigeration sy	stems.				
To equip	students with knowledge on safe handling and	instrumentatio	n foi	cry	ogen	s.

UNIT – I INTRODUCTION	9
Insight on Cryogenics, Properties of Cryogenic fluids, Material properties at Cryoge	nic
Temperatures. Applications of Cryogenics in Space Programs, Superconductivity, Co	ryo
Metallurgy, Medical applications.	
UNIT – II LIQUEFACTION CYCLES	9
Carnot Liquefaction Cycle, F.O.M. and Yield of Liquefaction Cycles. Inversion Curve – Jo	ule
Thomson Effect. Linde Hampson Cycle, Precooled Linde Hampson Cycle, Claudes Cy	
Dual Cycle, Ortho-Para hydrogen conversion, Eollins cycle, Simpson cycle, Criti	ical
Components in Liquefaction Systems.	
UNIT – III SEPARATION OF CRYOGENEIC GASES	9
Binary Mixtures, T-C and H-C Diagrams, Principle of Rectification, Rectification Colu	mn
Analysis - McCabe Thiele Method. Adsorption Systems for purification.	
UNIT – IV CRYOGENIC REFRIGERATORS	9
J. T. Cryocoolers, Stirling Cycle Refrigerators, G.M.Cryocoolers, Pulse Tube Refrigerat	ors
Regenerators used in Cryogenic Refrigerators, Dilution refrigerators, Magnetic Refrigerator	s.
UNIT - V HANDLING OF CRYOGENS	9
Cryogenic Dewar, Cryogenic Transfer Lines. Insulations used in Cryogenic Systems,	
Instrumentation to measure Flow, Level and Temperature.	
Total Contact Hours :	45

Course Outcomes:	Upon completion of the course students should be able to:			
CO1	On successful completion of this course the student will be able to understand			
COI	Concepts of cryogenic, cryogenic refrigeration and handling of the cryogens.			
CO2	Analyze different cryogenic liquefaction cycles and their performance.			
CO3	Describe gas separation techniques using cryogenic rectification and			
COS	adsorption.			
CO4	Understand and compare various types of cryogenic refrigeration systems.			
CO5	Apply safety protocols and measurement techniques for handling cryogens.			

Textbooks:

- 1. Klaus D. Timmerhaus and Thomas M. Flynn, Cryogenic Process Engineering, Plenum Press, New York, 1989.
- 2. Randall F. Barron, Cryogenic Systems, McGraw-Hill, 1985.
- 3. Scott R.B., Cryogenic Engineering, Van Nostrand and Co., 1962.

Reference books/other materials/web resources:

- 1. Herald Weinstock, Cryogenic Technology, Boston Technical Publishers, inc., 1969.
- 2. Robert W. Vance, Cryogenic Technology, John wiley & Sons, Inc., New York, London.
- 3. G. Venkatarathnam, Cryogenic Mixed Refrigerant Processes, Springer Publication, 2010.

			CO-PO	Mapping			C	pping		
PO & PSO / CO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO:	
CO1	1		2	1		3	2	2	2	
CO2	1		2	2		1	3	3	2	
CO3	1		2	1		1	2	3	2	
CO4			2	1		1	3	3	2	
CO5				-			2	2	3	
Average:	1		1.6	1		1.2	2.8	2.6	2.2	

HoD/BOS Chairman

Subject Code	Subject Name	Category	L	T	P	C
TE24006	REFRIGERATION SYSTEMS					
Course Objectiv	ves:	fr				
To study the cyc	le analysis pertaining to Refrigeration systems	5.				
To study	the performance of system components and the	neir balancing in	ı cyc	les.		
To study	the significance of Refrigerants and their imp	act on the envir	onm	ent.		
	about the various components used in refrigeral al characteristics.	ation systems a	nd th	eir		
 To apply systems. 	system balancing and performance analysis to	chniques to ref	riger	ation	ı	
To explorable application	re electrical drives, control systems, and noise ons.	management ir	refr	igera	ation	

UNIT - I INTRODUCTION AND REFRIGERANTS Applications, Unit of refrigeration – Ideal cycles - Classification of Refrigerants, Refrigerant properties, Oil Compatibility, Environmental Impact-Montreal / Kyoto protocols-Eco Friendly Refrigerants, alternatives to HCFCS, Secondary Refrigerants. **REFRIGERATION CYCLES – ANALYSIS** Development of Vapor Compression Refrigeration Cycle from Reverse Carnot Cycleconditions for high COP-deviations from ideal vapor compression cycle, Multi pressure System, Cascade Systems-Analysis. Vapor Absorption Systems-Aqua Ammonia & Li-Br Systems, Steam Jet Refrigeration Thermo Electric Refrigeration, Air Refrigeration cycles, Heat pumps. UNIT – III REFRIGERATION SYSTEM COMPONENTS 9 Compressor-Types, performance, Characteristics, Types of Evaporators & Condensers and their functional aspects, Expansion Devices and their Behaviour with fluctuating load, cycling controls, other components such as Accumulators, Receivers, Oil Separators, Strainers, Driers, Check Valves, Solenoid Valves Defrost Controllers, etc. UNIT - IV SYSTEM BALANCING 9 Balance points and system simulation - compressor, condenser, evaporator and expansion devices performance - Complete system performance; graphical and mathematical analysis sensitivity analysis. UNIT - V **ELECTRICAL DRIVES & CONTROLS** Electric circuits in Refrigeration systems, Refrigerant control devices, Types of Motors, Starters, Relays, Thermostats, Microprocessor based control systems, Pressure controls and other controls, Acoustics and noise controls. **Total Contact Hours: 45**

Course Outcomes:	Upon completion of the course students should be able to:					
	The student will be able to understand different refrigeration systems					
COI	and do the design of the same for a particular applications.					
CO2	Analyze various refrigeration cycles including vapor compression and					
CO2	absorption systems.					
CO3	Evaluate the performance and function of key refrigeration components.					
CO4	Conduct system simulation and balancing through graphical and mathematical methods					
CO5	Apply knowledge of electrical drives, controls, and acoustic considerations in refrigeration systems.					

HoD/BOS Chairman

Tex	tbooks:
1.	Arora C.P., Refrigeration and Air conditioning, McGraw Hill, 3rd Ed., 2010.
2.	Dossat R.J., Principles of refrigeration, John Wiley, S.I. Version, 2001.
3.	Jordan and Priester, Refrigeration and Air conditioning 1985.

Ref	erence books/other materials/web resources:
1.	Kuehn T.H., Ramsey J.W. and Threlkeld J.L., Thermal Environmental Engineering, 3rd
	Edition, Prentice Hall, 1998.
2.	Langley Billy C., 'Solid state electronic controls for HVACR, Prentice-Hall 1986.
3.	Rex Milter, Mark R.Miller., Air conditioning and Refrigeration, McGraw Hill, 2006.

	CO-PO Mapping						CO-PSO Mapping			
PO & PSO / CO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3	
CO1	1		2	1		3	2	2	3	
CO2	1		2	2		1	3	3	2	
CO3	1		2	1		1	3	3	2	
CO4			2	1		1	2	3	2	
CO5				_			2	2	3	
Average:	0.6		1.6	1		1.2	2.4	2.6	2.4	

Subject Code	Subject Name	Category	L	T 0	P 0	C
IC24001	ELECTRONIC ENGINE MANAGEMENT SYSTEMS	PEC	3			
Course Objective	es:					
To provide	basic grounding on electronics					
To learn th	ne various sensors used in engine manageme	ent systems				
Give an ov	verview of different types of ignition system	S				
To underst	and the significance of gasoline injection sy	stems				
	he latest advancements in Diesel injection s					

UNIT – I FUNDAMENTALS OF AUTOMOTIVE ELECTRONICS Components for Electronic Engine Management System- Open and Closed Loop Control Strategies- PID Control- Look Up Tables- Introduction to Modern Control Strategies Like Fuzzy Logic and Adaptive Control. Switches- Active Resistors- Transistors- Current Mirrors/Amplifiers- Voltage and Current References- Comparator- Multiplier. Amplifier-Filters- A/D and D/A Converter. UNIT - II SENSORS AND ACTUATORS Inductive- Hall Effect- Thermistor- Piezo Electric- Piezoresistive- Based Sensors. Throttle Position- Mass Air Flow- Crank Shaft Position- Cam Position- Engine Speed Sensor- Exhaust Oxygen Level (Two Step- Linear Lambda and Wideband)- Knock- Manifold Temperature and Pressure Sensors. Solenoid-Relay (Four and Five Pin)- Stepper Motor UNIT - III SI ENGINE MANAGEMENT Layout and Working of SI Engine Management Systems. Group and Sequential Injection Techniques. MPFI- GDI- Advantages of Electronic Ignition Systems. Types of Solid State Ignition Systems and Their Principle of Operation- Contactless (BREAKERLESS) Electronic Ignition System- Electronic Spark Timing Control UNIT - IV CI ENGINE MANAGEMENT Fuel Injection System Parameters Affecting Combustion- Noise and Emissions in CI Engines. Electronically Controlled Unit Injection System. Common Rail Fuel Injection System. Working of Components Like Fuel Injector- Fuel Pump- Rail Pressure Limiter- Flow Limiter-EGR Valve. UNIT – V DIGITAL ENGINE CONTROL SYSTEM Cold Start and Warm Up Phases- Idle Speed Control- Acceleration and Full Load Enrichment-Deceleration Fuel Cut-off. Fuel Control Maps- Open Loop and Closed Loop Control -

Course Outcomes:	Upon completion of the course students should be able to:
CO1	Understand the basic electronic components and controls used in Sensors
CO2	Explain the different types of sensors used in an automobile engine
CO3	Describe the ignition and injection methods used in an SI engine
CO4	Describe the fuel injection systems in a diesel engine and the emission control systems
CO5	Explain the electronic systems used in the fuel control system and the dash board unit.

Integrated Engine Control System- Electromagnetic Compatibility - EMI Suppression

Techniques – Electronic Dash Board Instruments – Onboard Diagnosis System.

Principal

Total Contact Hours: 45

Tex	xtbooks:					
1.	Understanding Automotive Electronics William B Ribbens, SAE 1998					
2.	Automobile Electronics by Eric Chowanietz SAE					

Ref	erence books/other materials/web resources:
1.	Diesel Engine Management by Robert Bosch, SAE Publications, 3rd Edition, 2004
2.	Gasoline Engine Management by Robert Bosch, SAE Publications, 2nd Edition, 2004

	CO-PO Mapping						CO-PSO Mapping			
PO & PSO / CO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3	
CO1	2		2	3		2	3	2	2	
CO2	3		2	3		3	2	3	2	
CO3	3		2	3		3	3	2	2	
CO4	3		2	3		3	3	3	2	
CO5	3			3		2	2	2	3	
Average:	2.8		1.6	3		2.6	2.6	2.4	2.2	

Subject Code	Subject Name	Category	L	T	P	C
TE24007	COGENERATION AND WASTE HEAT RECOVERY SYSTEMS	PEC	3	0	0	3
Course Objectiv	ves:					
To analyz	ze the basic energy generation cycles.					
 To detail application 	about the concept of cogeneration, its types and ons.	probable are	as of	•		
• To study analysis.	the significance of waste heat recovery systems	and carry out	its e	cond	mic	

• To explore different waste heat recovery systems and design considerations.

 To perform economic analysis for optimized selection, design, and implementation of cogeneration and waste heat recovery systems.

UNIT-I INTRODUCTION Introduction – principles of thermodynamics – cycles – topping – bottoming – combined cycle - Organic rankine cycles - performance indices of cogeneration systems - waste heat recovery - sources and types - concept of tri and quad generation. **COGENERATION TECHNOLOGIES** Configuration and thermodynamic performance – steam turbine congeneration systems – gas turbine cogeneration systems - reciprocating IC engines cogeneration systems - combined cycles cogeneration systems – advanced cogeneration systems: fuel cell, Stirling engines etc., UNIT - III ISSUES AND APPLICATIONS OF COGENERATION **TECHNOLOGIES** Cogeneration plants electrical interconnection issues - utility and cogeneration plant interconnection issues – applications of cogeneration in utility sector – industrial sector – building sector - rural sector - impacts of cogeneration plants - fuel, electricity and Environment. UNIT - IV WASTE HEAT RECOVERY SYSTEMS Selection criteria for waste heat recovery technologies - recuperators - Regenerators economizers - plate heat exchangers - thermic fluid heaters - Waste heat boilers classification, location, service conditions, design Considerations - fluidized bed heat Exchangers – heat pipe exchangers – heat pumps – sorption systems. ECONOMIC ANALYSIS Investment cost – economic concepts – measures of economic performance – procedure for economic analysis – examples – procedure for optimized system selection and design – load curves - sensitivity analysis - regulatory and financial frame work for cogeneration and waste heat recovery systems. **Total Contact Hours: 45**

HoD/BOS Chairman

Course Outcomes:	Upon completion of the course students should be able to:
CO1	On completing of the syllabus students can able understand the principles of cogeneration systems, waste heat recovery systems, applications of cogeneration and economic analysis of waste heat recovery systems.
CO2	Analyze various cogeneration technologies and their configurations.
CO3	Evaluate the sector-specific applications and interconnection issues of cogeneration plants.
CO4	Select appropriate waste heat recovery devices based on criteria and design considerations.
. CO5	Perform economic and sensitivity analysis to aid in the selection and optimization of cogeneration and recovery systems.

Tex	tbooks:
1.	Charles H. Butler, Cogeneration, McGraw Hill Book Co., 1984.
2.	De Nevers, Noel, Air Pollution Control Engineering, McGraw Hill, New York, 1995.
3.	EDUCOGEN - The European Educational tool for cogeneration, Second Edition, 2001.

Ref	erence books/other materials/web resources:
1.	Energy Cogeneration Hand book, George Polimveros, Industrial Press Inc, Newyark 1982.
2.	Horlock JH., Cogeneration - Heat and Power, Thermodynamics and Economics, Oxford,1987.
3.	Institute of Fuel, London, Waste Heat Recovery, Chapman & Hall Publishers, London, 1963.

		CO-PO Mapping						CO-PSO Mapping			
PO & PSO / CO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3		
CO1	2		2	3		2	3	2	2		
CO2	3		2	3		3	3	3	2		
CO3	3		2	3		3	2	3	3		
CO4	3		2	3		3	2	3	2		
CO5	3			3		2	2	2	3		
Average:	2.8		1.6	3		2.6	2.4	2.6	2.4		

Subject Code	Subject Name	Category L			P	C
TE24008 DESIGN OF TURBO MACHIN		PEC	3	0	0	3
Course Objective	es:	, 6)				
To elucida	te the energy transfer process, Fans laws in T	urbo machines				
To illustrat	te the selection and working of Centrifugal Bl	lowers.				
	different types of axial fans and rotor design					
To outline	the working different compressors and its per	rformance chai	racte	ristic	s.	
To select d	lifferent fans / blowers / compressors for spec	ific application	ns.			

UNIT – I INTRODUCTION Energy transfer between fluid and rotor velocity triangles for a generalized turbo machines velocity triangle. Euler's equation for turbo machines and its different forms. Degree of reaction in turbo machines various efficiencies - isentropic, mechanical, thermal, overall And polytrophic – fan laws – Dimensionless parameters – Specific speed – Cordier Diagram. **CENTRIFUGAL BLOWERS** Centrifugal Blowers: Theoretical characteristic curves, velocity triangles, losses and hydraulic efficiency, flow through impeller casing, inlet, nozzle, volute, diffusers. Leakage losses, mechanical losses, multi-vane impellers, cross flow fans. Selection of Centrifugal blower for duct flow. UNIT – III AXIAL FLOW FANS Rotor design using airfoil theory, vortex theory, cascade effects, degree of reaction, blade twist, stage design, surge and stall, stator and casing, mixed flow impellers. Selection of axial fans / blower for duct flow. UNIT - IV COMPRESSORS Reciprocating compressors, Construction Type - open, hermetic and semi sealed effect of cylinder cooling, heating and friction. Dynamic compressor - centrifugal compressor, velocity triangles, performance characteristics, part load operation, Capacity control. Selection of compressor for different applications. UNIT - V **DESIGN AND APPLICATIONS** Special design and applications of blowers / compressors for air conditioning plants, cooling towers, ventilation systems, booster systems - turbocharger. **Total Contact Hours: 45**

Course Outcomes:	Upon completion of the course students should be able to:		
CO1	Analyze the fundamentals of Turbo machinery and solve the problems on		
COI	Energy Transfer.		
CO2	Categorize the Centrifugal Blowers and Fans for various applications.		
CO3	Summarize the different types of axial fan design and performance.		
CO4	Analyze various compressors based on its performance.		
CO5	Select fans / blowers /compressors for the given applications.		

HoD/BOS Chairman

C-V

Textbooks:				
1.	Austin H. Church, Centrifugal pumps and blowers, John Wiley and Sons, 2017			
2.	Dixon, Fluid Mechanics, Thermodynamics of turbo machinery Pergamon Press, 1984.			
3.	Fans & Ventilation A practical guide (Bill) cory WTW, Elsevier, 2005.			

Ref	Reference books/other materials/web resources:					
1.	Jay Matley., Fluid Movers: Pumps, Compressors, Fans and Blowers, McGraw-Hill					
	Publications, 1990.					
2.	Royce N. Brown, Compressors: Selection and Sizing, Elsevier, 2005.					
3.	Tony Giampaolo, Compressor Hand Book Principles and Practice, The Fairmont Press,					
	2010.					

		CO-PO Mapping						CO-PSO Mapping			
PO & PSO / CO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3		
CO1	1	1	1			1	3	2	2		
CO2	1						3	3	2		
CO3		2	1				3	3	2		
CO4	1	1	1				3	2	3		
CO5		1				2	2	3	3		
Average:	0.6	1	0.6			0.6	2.8	2.6	2.4		

C-0

Subject Code	Subject Name	Category	L	T	P	C
TE24009	ELECTRONICS COOLING AND PACKAGING	PEC	3	0	0	3
Course Objectiv	es:					
To provide	a basic knowledge of the technologies and proce	sses required for	the p	acka	ging.	
• To expose	the students to all aspects of electronic equi	pment and con	ipone	ents	inclu	ding
electrical,	thermal, fluid dynamics and reliability issues					
To illustrate	a Dadiation on the surface through electronic com	mananta				

- To illustrate Radiation on the surface through electronic components
- To analyze the effect of electronics equipment at different modes
- To provide a vision for cooling systems and its packaging devices

INTRODUCTION

Electronic Equipment, Components of Electronic Systems, Thermal management in electronic devices -Packaging Trends. Electronic packaging and interconnection technology. Conduction in Electronic Equipment: Thermal Conductivity, Thermal Resistances, Conductivity in Solids, Conductivity in Fluids, Conduction-Steady State, Conduction in Simple Geometries, Conduction through a Plane Wall, Conduction through Cylinders and Spheres.

UNIT – II **ELECTRONICS ASSISTED IN THERMAL COMPONENTS**

Conduction—Transient, Lumped Capacitance Method, Conduction in Extended Surfaces. Fin Efficiency, Fin Optimization, Fin Surface Efficiency, Thermal Contact Resistance in Electronic Equipment, Discrete Heat Sources and Thermal Spreading. Fluid Dynamics for Electronic Equipment-Boundary Layer Theory, Turbulent Flow, Loss Coefficients and Dynamic Drag, Fans and Pumps, Electronic Chassis Flow.

UNIT – III IMPACT OF RADIATION ON SURFACE

Radiation Heat Transfer in Electronic Equipment, The Electromagnetic Spectrum, Radiation Equations, Stefan-Boltzmann Law, Surface Characteristics, Emittance, Emittance Factor Emittance from Extended Surface, Absorptance, Reflectance, Specular Reflectance, Heat Transfer with Phase Change. Combined Modes of Heat Transfer for Electronic Equipment, Radiation and Convection in Parallel.

UNIT – IV ANALYSIS OF ELECTRONIC EQUIPMENT

Introduction to Thermal Design of Electronic Equipment. Analysis of Thermal Failure of Electronic Components. Analysis of Thermal Stresses and Strain, Effect of PCB Bending Stiffness on Wire Stresses, Vibration Fatigue in Lead Wires and Solder Joints. Electronics Cooling Methods in Industry. Heat Sinks, Heat Pipes, Heat Pipes in Electronics Cooling, Thermoelectric Cooling, Immersion Cooling, Cooling Techniques for High Density Electronics.

COOLING SYSTEMS FOR ELECTRONIC PACKAGES

Cooling systems for electronics packages – heat sinks, heat spreaders, heat pipes, micro channels, actuators, fans, cold plates; Thermo-mechanical issues in electronic packages Effects of Vibration vibrating systems, vibration of axially loaded components, circuit boards, Theorem of Castigliano; Reliability Metrology and Analysis, Environmental Stress Screening.

Total Contact Hours: 45

Course Outcomes:	Upon completion of the course students should be able to:
CO1	Identify the basic knowledge about the packaging of electronics
CO2	Utilize the ability of electronic cooling system.
CO3	Analyse the radiation through multi electronic devices
CO4	Evaluate the performance calculation of Electronics Equipment.
CO5	Applying cooling systems for different thermal sourcing agents

Textbooks:

- 1. Rao R. Tummala: Fundamentals of Microsystem Packaging, McGraw Hill, 2001.
- 2. Richard K. Ulrich & William D. Brown Advanced Electronic Packaging 2nd Edition: IEEE Press, 2006.
- 3. Yunus A. Cengel: Heat Transfer A Practical Approach, McGraw Hill, 2003. 4. The Electronic Packaging Handbook- Glenn R. Blackwell, 1st Edition, 2000

Reference books/other materials/web resources:

- 1. Kraus, A.D., & Bar-Cohen, A. "Thermal Analysis and Control of Electronic Equipment" McGraw-Hill, 1983.
- 2. Yeh, R. T., & Chu, R. C."Thermal Management of Electronic Systems" ASME Press, 2002.
- 3. Lasance, C. J. M., & Poppe, A. "Thermal Management for LED Applications" Springer, 2014.

			CO-PC	O-PO Mapping CO-PSO Mapp					ping
PO & PSO / CO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3
CO1	1	3		2	2		3	2	1
CO2	1	3		3	2		3	3	2
CO3	1	1		2	2		3	3	2
CO4	2	2		1	2		2	2	3
CO5	1	1		3	1		2	3	3
Average:	1.2	2		2.2	1.8		2.6	2.6	2.2

Hop BO3 Chairman

Subject Code	Subject Name	Category	L	T	P 0	C	
TE24010	AIR CONDITIONING SYSTEMS	PEC	3	0		3	
Course Objectives:							
 To learn 	the psychometric concepts underlying Air cond	itioning proce	ss.				
	the design features and load estimation principl			ondi	tioni	ng	
system.							
To learn	earn about the critical auxiliary systems						
To learn about the air distribution circuits, water distribution circuits etc.							
To learn about the HVAC systems in air conditioning systems							

UNIT – I	PSYCHROMETRY AND AIR CONDITIONI	ING PROCESSES	9
Moist Air pro	perties, use of Psychrometric Chart, Various Psyc	hrometric processes, Air	
Washer, Adia	batic Saturation. Summer and winter Air condition	ning, Enthalpy potential and	its
insights.		J. 10 1	
UNIT – II	LOAD ESTIMATION		9
Thermal com	fort - Design conditions - Solar Radiation-Heat G	ain through envelopes -	-
	nd ventilation loads - Internal loads - Procedure fo		
estimation.			
UNIT – III	AIR CONDITIONING SYSTEMS		9
Thermal distr	ibution systems - Single, multi zone systems, tern	ninal reheat systems, Dual di	uct
	able air volume systems, water systems and Unitar		
UNIT – IV	AIR DISTRIBUTION AND CONTROL		9
Flow through	Ducts, Static & Dynamic Losses, Diffusers, Du	ct Design-Equal Friction	
	em Balancing, Fans & Duct System Characteristic		ole
	ystems, Air Handling Units and Fan Coil units -		
	flow and quality.	1	
UNIT – V	HVAC SYSTEM IN AUTOMOBILES		9
Automotive S	system layout and Components- Commonly used F	Refrigerants- Safety devices	_
	ol – Fuel efficiency aspects.		
		Total Contact Hours :	45

Course Outcomes:	Upon completion of the course students should be able to:					
CO1	Analyse psychometrically the Air conditioning processes.					
CO2	Estimate the heat load for summer and winter Air conditioning applications.					
CO3	Understand and appreciate the utility of different Air conditioning systems for different applications.					
CO4	Design a fan-duct system for Air conditioning application.					
CO5	Understand and appreciate the individual components of an automobile Air conditioning system. Various HVAC system components for various applications in the building requirements.					

Text	tbooks:
1.	ALI VEDAVARZ, SUNIL KUMAR, Mohammed Iqbal, Hussain Handbook of Heating,
	Ventilation and Air conditioning for Design Implementation, Industrial press Inc,
	2007.
2.	Arora C.P., Refrigeration and Air Conditioning, Tata McGraw Hill Pub. Company,
	2010.
3.	ASHRAE, Fundamentals and equipment, 4 volumes-ASHRAE Inc. 2005.

Refe	erence books/other materials/web resources:
	Carrier Air Conditioning Co., Handbook of Air Conditioning Systems design, McGraw
	Hill, 1985.
2.	Jones, Air Conditioning Engineering, Edward Amold pub. 2001.
3.	Kuehn T.H., Ramsey, J.W. and Threlkeld, J.L., Thermal Environmental Engineering
	3rd Edition, Prentice Hall, 1998

	CO-PO Mapping						CO-PSO Mappi		
PO & PSO / CO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3
C01	1	1		1	1		3	2	1
CO2	2	2		1	2		3	3	_ 2
CO3	1	2		1	` 2		2	3	2
CO4	1	1		1	1		2	2	3
CO5	1	2		1	2		2	1	3
Average:	1.2	1.6		1	1.6		2.4	2.2	2.2

Subject Code	Subject Name	Category	L	T	P	C
IC24002	ALTERNATE FUELS FOR IC ENGINES	PEC	3	0	0	3
Course Objectiv	ves:					
To expos	e potential alternate fuels and their characteristic	S				
To use an character	ppropriate synthetic fuels and fuel additives for bristics	etter combus	tion			
To utilize	e alcohol fuels effectively for lower emissions					
To elabo engines	rate on the utilization of Bio-Diesel and its types	as a suitable	fuel	in C	Ι	
To utilize character	e different gaseous fuels and predict their performistics	nance and co	mbu	stion	1	

UNIT - I INTRODUCTION	9
Availability, Suitability, Properties, Merits and Demerits of Potential Alternative Fue	ls –
Alcohols, Biodiesel, Hydrogen, Liquefied Petroleum Gas, Natural Gas, Biogas, Fuel stand	ards
– ASTM & EN.	
UNIT – II SPECIAL AND SYNTHETIC FUELS	9
Different synthetic fuels, Merits, and demerits, Dual, Bi-fuel and Pilot injected fuel systems	s,
Fuel additives - types and their effect on performance and emission characteristics of engir	ies,
Flexi-fuel systems, Ethers - as fuel and fuel additives, properties and characteristics.	
UNIT - III ALCOHOL FUELS	9
Alcohols - Properties, Production methods and usage in engines. Blending, dual	fuel
operation, surface ignition, spark ignition and oxygenated additives. Performance, combust	ion
and emission Characteristics in engines. Issues & limitation in alcohols.	
UNIT – IV BIO-DIESEL FUELS	9
Vegetable oils and their important properties. Fuel properties characterization. Method using vegetable oils – Blending, preheating, Transesterification and emulsification	
Performance, combustion and emission characteristics in diesel engines. Third general	tion
biofuels, Ternary and Quaternary fuels, Issues & limitation of using vegetable oils in	ı IC
engines	
UNIT – V GASEOUS FUELS	9
Biogas, Natural gas, LPG, Hydrogen - Properties, problems, storage and safety aspe	ects.
Methods of utilization in engines. Performance, combustion and emission characteristic	
engines. Issues & limitation in Gaseous fuels	
Total Contact Hours	: 45

Course Outcomes:	Upon completion of the course students should be able to:							
CO1	pose potential alternate fuels and their characteristics							
CO1	Use appropriate synthetic fuels and fuel additives for better combustion							
CO2	characteristics							
CO3	Utilize alcohol fuels effectively for lower emissions							
CO4	Elaborate on the utilization of Bio-Diesel and its types as a suitable fuel							
CO4	in CI engines							
COF	Utilize different gaseous fuels and predict their performance and							
CO5	combustion characteristics.							

Textbooks:

- 1. Keith Owen and Trevor Eoley, Automotive Fuels Handbook, SAE Publications, 1990.
- 2. Pundir B.P, I.C. Engines Combustion and Emission, 2010, Narosa Publishing House.
- 3. Pundir B.P, Engine Combustion and Emission, 2011, Narosa Publishing House Keith

Reference books/other materials/web resources:

1. Richard L. Bechtold, Automotive Fuels Guide Book, SAE Publications, 1997

			CO-PO	CO-PSO Mapping					
PO & PSO / CO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3
CO1	1	-	2		1		3	2	2
CO2	2	2	2		2		2	3	2
CO3	2	2	2		1		2	3	3
CO4	2	3	3		2	2	3	3	2
CO5	2	3	2		2	2	3	2	3
Average:	1.8	2.5	2.2		1.6	0.8	2.6	2.6	2.4

CS

Subject Code	Subject Name	Category	L	T	P	C
TE24011	DESIGN OF HEAT EXCHANGERS	PEC	3	0	0	3
Course Objectiv	es:					
• To make s	students familiarize with the various types of h	eat exchanger	S			
To explain	n the importance of thermal and stress analysis	of heat excha	nger	S		
	ate the thermal design aspects of tubular heat e					
To provid	e the details of design aspects of compact hea	t exchangers				
	n the function and design aspects of condenser		towe	rs		

UNIT – I	FUNDAMENTALS OF HEAT EXCHANGER	9
	distribution and its implications types-shell and tube heat exchange	
regenerators a	and recuperators – analysis of heat exchangers–LMTD and effectiveness methods	od
UNIT – II	STRESS ANALYSIS	9
Effect of turk	oulence - friction factor - pressure loss - stress in tubes - header sheets	and
pressure vesse	els – thermal stresses, shear stresses –types of failures.	
UNIT – III	DESIGN ASPECTS	9
	and pressure loss - flow configuration - effect of baffles - effect of deviati	
from ideality	- design of double pipe - finned tube - shell and tube heat exchanger	s –
simulation of	heat exchangers	
UNIT – IV	COMPACT AND PLATE HEAT EXCHANGERS	9
Types-merits	and demerits-design of compact heat exchangers, plate heat exchange	gers
performance i	influencing parameters— limitations.	
UNIT – V	CONDENSERS AND COOLING TOWERS	9
Design of sur	face and evaporative condensers—cooling tower—performance characteristics	
	Total Contact Hours	: 45

Course Outcomes:	Upon completion of the course students should be able to:						
CO1	Classify heat exchangers and illustrate the applications of various types						
CO1	of heat exchangers						
CO2	Interpret the significance of stress analysis of heat exchangers						
CO3	Analyse the design of tubular heat exchangers for various applications						
CO4	Appraise the design of compact heat exchangers for industrial requirements						
CO5	Evaluate the performance calculation of condensers and cooling towers						

Tex	tbooks:
1.	SadikKakac, Hongtan Liu, Anchasa Pramuanjaroenkij, "Heat Exchangers Selection,
	Rating and Thermal Design", CRC Press, Third Edition, 2012.
2.	Ramesh K.Shah, Dušan P.Sekulic, "Fundamentals of heat exchanger design", John Wiley
	& Sons, 2003.
3.	Robert W. Serth, "Process heat transfer principles and applications", Academic press,
	Elesevier, 2010.

Reference books/other materials/web resources:

- 1. T. Kuppan, "Heat exchanger design hand book", New York: Marcel Dekker, 2009.
- 2. Arthur.P Frass, "Heat Exchanger Design", John Wiley & Sons, 1989.

			CO-PSO Mapping						
PO & PSO / CO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3
CO1	3		1	3	1		3	2	2
CO2	3		1	3	1		2	3	2
CO3	3		3	2	1		3	3	2
CO4	3		2	2	1		3	2	3
CO5	3		3	1	1		2	3	3
Average:	3		2	2.2	1		2.6	2.6	2.4

HoD/BOS Chairman

Subject Code	Subject Name	Category	3	T 0	P 0	C
TE24012	BATTERY THERMAL MANAGEMENT SYSTEM	PEC				3
Course Objecti	ves:					
• The obje	ctive of this course is to introduce learner to batt	eries, its para	mete	rs,		
modellin	g and charging requirements.	_				
The cour	se will help learner to develop battery management	ent algorithm	s for	batt	eries	
To analy	se the battery state of charge and its functions					
	ate models using the range of simulation.					
	ine the design standards of a battery.					

UNIT - I INTRODUCTION	9
Introduction and BMS functionality, Battery pack topology, BMS Functionality,	Voltage
Sensing, Temperature Sensing, Current Sensing, BMS Functionality, High-voltage of	ontactor
control, Isolation sensing, Thermal control, Protection, Communication Interface,	Range
estimation, State-of- charge estimation, Cell total energy and cell total power.	
UNIT – II BATTERY MANAGEMENT SYSTEM REQUIREMENT	9
Introduction and BMS functionality, Battery pack topology, BMS Functionality,	Voltage
Sensing, Temperature Sensing, Current Sensing, BMS Functionality, High-voltage c	ontactor
control, Isolation sensing, Thermal control, Protection, Communication Interface,	Range
estimation, State-of- charge estimation, Cell total energy and cell total power.	
UNIT – III BATTERY STATE OF CHARGE AND STATE OF HEALTH	9
ESTIMATION, CELL BALANCING	
Battery state of charge estimation (SOC), voltage-based methods to estimate SOC,	Model-
based state estimation, Battery Health Estimation, Lithium-ion aging: Negative el	ectrode,
Lithium-ion aging: Positive electrode, Cell Balancing, Causes of imbalance, Circ	uits for
Balancing.	
UNIT - IV MODELLING AND SIMULATION	9
Equivalent-circuit models (ECMs), Physics-based models (PBMs), Empirical m	odelling
approach, Physics-based modelling approach, simulating an electric vehicle, Vehic	e range
calculations, simulating constant power and voltage, Simulating battery packs.	
UNIT - V DESIGN OF BATTERY BMS:	9
Design principles of battery BMS, Effect of distance, load, and force on battery life and	l BMS,
energy balancing with multi-battery system	
Total Contact Ho	urs : 45

Course Outcomes:	Upon completion of the course students should be able to:
CO1	Interpret the role of battery management system
CO2	Identify the requirements of Battery Management System
CO3	Interpret the concept associated with battery charging / discharging process
CO4	Calculate the various parameters of battery and battery pack
CO5	Design the model of battery pack

Textbooks:

- 1. Plett, Gregory L. Battery management systems, Volume I: Battery modeling. Artech House, 2015.
- 2. Plett, Gregory L. Battery management systems, Volume II: Equivalent-circuit methods, Artech House, 2015.
- 3. Bergveld, H.J., Kruijt, W.S., Notten, P.H.L "Battery Management Systems -Design by Modelling" Philips Research Book Series 2002.

Reference books/other materials/web resources:

- 1. Davide Andrea," Battery Management Systems for Large Lithium-ion Battery Packs" Artech House, 2010
- 2. Pop, Valer, et al. Battery management systems: Accurate state-of-charge indication for Battery powered applications. Vol. 9. Springer Science & Business Media, 2008.

			CO-PO	Mapping			cc	CO-PSO Mapping			
PO & PSO / CO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3		
CO1	1	1	2		3		3	2	2		
CO2					2		3	3	2		
CO3	2	3	1				3	3	2		
CO4	1						2	3	3		
CO5	1	1			1		3	2	3		
Average:	1	1	0.6		1.2		2.8	2.6	2.4		

HoD/BOS Chairman

Subject Code	Code Subject Name Ca				P	C
EY24001	ADVANCED ENERGY STORAGE TECHNOLOGIES	PEC 3		0	0	3
Course Objectiv	ves:					
To under	stand the various types of energy storage techn	ologies and its	app	licat	ions	
To study	the various modelling techniques of energy sto	rage systems	using	TR	NSY	'S
To learn	working concepts and types of batteries					
To make	the students to get understand the concepts of l	Hydrogen and	Biog	gas s	torag	je
To provi	de the insights on super capacitor, Fly wheel an	d compressed	ener	gy s	torag	ge
system		_				

UNIT - I INTRODUCTION	9		
Necessity of energy storage-types of energy storage-comparison of energy storage	age		
technologies- Applications			
UNIT – II THERMAL STORAGE SYSTEM	9		
Thermal storage-Types-Modelling of thermal storage units-Simple water and rock l	bed		
storage system-pressurized water storage system-Modelling of phase change storage system			
Simple units, packed bed storage units - Modelling using porous medium approach, Use	of		
TRNSYS.			
UNIT – III ELECTRICAL ENERGY STORAGE	9		
Fundamental concept of batteries-measuring of battery performance, charging and discharging			
of a battery, storage density, energy density, and safety issues. Types of batteries - Lead Ac	cid,		
Nickel-Cadmium, Zinc Manganese di oxide and modern batteries for example(i)zi	nc-		
Air(ii)Nickel Hydride,(iii)Lithium Battery			
UNIT – IV HYDROGEN AND BIOGAS STORAGE	9		
Hydrogen storage options-compressed gas-liquid hydrogen-Metal Hydrides, chemical			
Storage, Biogas storage-comparisons. Safety and management of hydrogen and Bio	gas		
storage- Applications.			
UNIT – V ALTERNATE ENERGY STORAGE TECHNOLOGIES	9		
Flywheel, Super capacitors, Principles & Methods-Applications, Compressed air Ene	rgy		
storage, Concept of Hybrid Storage – Applications			
Total Contact Hours :	45		

Course Outcomes:	Upon completion of the course students should be able to:				
CO1	Identify the energy storage technologies for suitable applications.				
CO2	Analyze the energy storage systems using TRNSYS.				
CO3	Summarise the concepts and types of batteries.				
CO4	Examine the principle of operation of Hydrogen and Biogas storage systems				
CO5	Explain the working of super capacitor, Flywheel and compressed energy storage systems				

Text	t book:
1.	Ibrahim Dincer and Mark A. Rosen, Thermal Energy Storage Systems and Applications,
	John Wiley & Sons 2010.
2.	Viswanathan, Fuel cell principle and applications university press,2006.

Ref	erence books/other materials/web resources:
1.	Luisa F.Cabeza, Advances in Thermal Energy Storage Sy stems: Methods and
	Applications, Elsevier Wood head Publishing, 2015
2.	Robert Huggins, Energy Storage: Fundamentals, Materials and Applications, 2 nd edition,
	Springer,2015.
3.	Ru-shiliu, Leizhang, Xueliang sun, Electrochemical technologies for energy storage and
	conversion,, Wileypublications, 2012
4.	National Energy Technology Laboratory, U.S. Department of Energy, Fuel Cell
	Handbook (Seventh Edition).

		CO-PO Mapping						CO-PSO Mapping			
PO& PSO / CO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3		
CO1	2	-	1	2			3	2	2		
CO2 ·	2	-	1	3			3 、	3	2		
CO3	2	-	1	2			3	3	3		
CO4	2	-	1	2			2	3	2		
CO5	2	-	1	2			3	2	3		
Average:	2	-	1,4	2.2			2.8	2.6	2.4		

Subject Code	t Code Subject Name Category L T				P	C
IC24003	C24003 HYBRID AND ELECTRIC VEHICLES		3	0	0	3
Course Objectiv	es:					
To introd	uce the concept of hybrid and electric drive train	ıs				
To elaborate on the types and utilisation of hybrid and electric drive trains						
To expose on different types of AC and DC drives for electric vehicles						
To understand and utilise different types of energy storage systems						
To introd	uce concept of energy management strategies ar	d drive sizing	g			

UNIT – I INTRODUCTION	9
Basics of vehicle performance, vehicle power source characterization, transmis	sion
characteristics, History of hybrid and electric vehicles, social and environmental important	e of
hybrid and electric vehicles, impact of modern drive-trains on energy supplies	
UNIT - II HYBRID ELECTRIC DRIVE TRAINS	9
Basic concept of hybrid traction, introduction to various hybrid drive-train topologies, po	wer
flow control in hybrid drive-train topologies, fuel efficiency analysis. Electric Drive-train	ains:
Basic concept of electric traction, introduction to various electric drive-train topologies, po	wer
flow control in electric drive-train topologies, fuel efficiency analysis	
UNIT – III CONTROL OF AC & DC DRIVES	9
Introduction to electric components used in hybrid and electric vehicles, Configuration	and
control - DC Motor drives, Induction Motor drives, Permanent Magnet Motor drive,	and
Switch Reluctance Motor drives, drive system efficiency	
UNIT – IV ENERGY STORAGE	9
Introduction to Energy Storage Requirements in Hybrid and Electric Vehicles, Energy sto	rage
and its analysis - Battery based, Fuel Cell based, and Super Capacitor based, Hybridization	n of
different energy storage devices.	
UNIT – V DRIVE SIZING AND ENERGY MANAGEMENT STRATEGIES	9
Sizing the drive system: Matching the electric machine and the internal combustion en	gine
(ICE), Sizing the propulsion motor, sizing the power electronics, selection of approp	riate
energy storage technology, Energy Management Strategies: Introduction to en	ergy
management strategies used in hybrid and electric vehicles, classification and compariso	n of
energy management strategies, implementation issues	
Total Contact Hours	: 45

Course Outcomes:	Upon completion of the course students should be able to:
CO1	Characterise and configure hybrid drive trains requirement for a vehicle
CO2	Design and apply appropriate hybrid and electric drive trains in a vehicle
CO3	Design and install suitable AC and DC drives for electric vehicles
CO4	Arrive at a suitable energy storage system for a hybrid / electric vehicle
CO5	Apply energy management strategies to ensure better economy and efficiency

Text book:

- 1. Iqbal Hussein, Electric and Hybrid Vehicles: Design Fundamentals, CRC Press, 2003.
- 2. James Larminie, John Lowry, Electric Vehicle Technology Explained, Wiley, 2003

Reference books/other materials/web resources:

- 1. MehrdadEhsani, Yimi Gao, Sebastian E. Gay, Ali Emadi, Modern Electric, Hybrid Electric and Fuel Cell Vehicles: Fundamentals, Theory and Design, CRC Press, 2004.
- 2. Rand D.A.J, Woods, R & Dell RM Batteries for Electric vehicles, John Wiley & Sons, 1998

PO& PSO / CO	CO-PO Mapping						CO-PSO Mapping		
	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSOS
CO1	-	2	3	-	2	-	3	2	2
CO2	3	2	3	-	2	2	3	3	2
CO3	3	2	3	-	2	2	3	3	3
CO4	2	2	3	-	2	3	2	3	3
CO5	2	2	3		2	3	3	3	2
Average:	2.5	2	3		2	2.5	2.8	2.8	2.4

HoD/BOS Chairman

Subject Code	Subject Name	Category	3	T 0	P 0	C
TE24013	ADVANCED POWER PLANT ENGINEERING	PEC				3
Course Objective	es:					
 Understan 	d the thermodynamics associated with power	plants				
Detail on	the role of various utilities in coal based them	nal power plant	ts			
Acquire k	now-how on the working of gas turbine and o	liesel power pla	ints			
Appreciate	e the concept of Poly generation for total ene	rgy recovery fro	om a	syste	em	
Brief on the state of the	ne working of hydroelectric and nuclear power	er plants				

UNIT - I INTRODUCTION		9			
Energy scenario: India Vs. World - Load curves and-thermody	namic analysis of Convention	nal			
Power Plants (Coal, Gas Turbine and Diesel)-Advanced Power	Cycles-Kalina Cycle, IGCC				
UNIT - II COAL BASED THERMAL POWER PLANT	S	9			
Basics of typical power plant utilities - Boilers, Nozzles,	Turbines, Condensers, Cool	ing			
Towers, Water Treatment and Piping system – steam rate and l	neat rate – mean temperature	e of			
heat addition-Rankine cycle improvements-Superheat, Reheat	at, Regeneration, Supercritic	cal,			
AFBC/PFBC – computation of per unit cost of power generation	n from coal/biomass				
UNIT - III GAS TURBINE AND DIESEL POWER PLA	NTS	9			
Brayton cycle - Open and Closed - Improvements - Intercoole	er, Reheating and Regenerati	ion.			
Diesel power plant - Layout - Performance analysis and i	mprovement – Techniques	for			
starting, cooling and lubrication of diesel engines-computat					
generation					
UNIT – IV CHP AND MHD POWER PLANTS		9			
Cogeneration systems-types-heat to power ratio-Thermody	namic performance of ste	am			
turbine gas turbine and IC engine-based cogeneration sy					
CycleCombined cycle. MHD -Open cycle and closed cycle	Hybrid MHD & steam por	wer			
plants					
UNIT - V HYDRO ELECTRIC & NUCLEAR POWER	PLANTS	9			
Hydroelectric Power plants - classifications - essential elemen	nts - pumped storage system	ıs –			
micro and mini hydel power plants. General aspects of Nuclea	r Engineering - Components	s of			
nuclear power plants – Nuclear reactors & types – PWR, BWF					
Metal Cooled and Breeder reactor-nuclear safety-Environmental Issues-Computation of per					
Unit cost of power generation					
	Total Contact Hours	: 45			

Course Outcomes:	Upon completion of the course students should be able to:
CO1	Evaluate appropriate power generation technologies for mitigating the energy gap
CO2	Appraise the steam rate, heat rate and cost for generating electricity from coal based thermal power plants
CO3	Analyse and suggest measures for improving the performance of gas turbine and diesel power plants
CO4	Assess the applicability and performance of a cogeneration system
CO5	Decide a suitable type of hydroelectric/nuclear power plant commensurate with the prevailing conditions

Tex	t Book:
1.	Nag, P.K., Power Plant Engineering, Tata McGraw Hill Publishing Co Ltd, New
	Delhi,1998.
2.	Haywood, R.W., Analysis of Engineering Cycles,4th Edition, Pergamon
	Press,Oxford,1991.
3.	Wood, A.J., Wollen berg, B.F., Power Generation, operation and control, John Wiley,
	New York,1984

Ref	erence books/other materials/web resources:
1.	Gill, A.B., Power Plant Performance, Butter worths, 1984.
2	Lamarsh, J.R., Introduction to Nuclear Engg. 2nd edition, Addison-Wesley, 1983.

	CO-PO Mapping							CO-PSO Mapping			
PO& PSO / CO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3		
CO1	2	-	2	-	-	-	3	2	2		
CO2	2	-	2	2	-	1	3	3	3		
CO3	2	-	2	2	-	1	3	3	2		
CO4	2	-	2	2	-	1	2	3	3		
CO5	2	-	2	1	2	-	3	2	2		
Average:	2	-	2	1.4	0.4	0.6	2.8	2.6	2.4		

Subject Code	Subject Name	Category	L 3	T 0	P 0	C
IC24004	BOUNDARY LAYER THEORY AND TURBULENCE	PEC				3
Course Objectiv	res:					
To introdu	uce the fundamental concepts of boundary layer	r in real flows				
To disting	uish between turbulent and laminar boundary l	ayers.				
To model	turbulent flows using various approaches.					
To analys	e various flow parameters using statistical princ	ciples.				
	uce the types, characteristics of wall shear flow		ear f	lows		

UNIT – I FUNDAMENTALS OF BOUNDARY LAYER THEORY	9
Boundary Layer Concept, Laminar Boundary Layer on a Flat Plate at zero incidence,	
Turbulent Boundary Layer on a Flat plate at zero incidence, Fully Developed Turbulent Flov	N
in a pipe, Boundary Layer on an airfoil, Boundary Layer separation	
UNIT – II TURBULENT BOUNDARY LAYERS	9
Internal Flows - Couette flow - Two-Layer Structure of the velocity Field - Universal Laws	of
the wall- Friction law - Fully developed Internal flows - Channel Flow, Couette - Poiseuill	e
flows, Pipe Flow	
UNIT – III TURBULENCE AND TURBULENCE MODELS	9
Nature of turbulence – Averaging Procedures – Characteristics of Turbulent Flows – Types of	of
Turbulent Flows - Scales of Turbulence, Prandtl's Mixing length, Two-Equation Models, Lo	w
- Reynolds Number Models, Large Eddy Simulation	
UNIT – IV STATISTICAL THEORY OF TURBULENCE	9
Ensemble Average – Isotropic Turbulence and Homogeneous Turbulence – Kinematics of	
Isotropic Turbulence – Taylor's Hypothesis – Dynamics of Isotropic Turbulence – Grid	
Turbulence and decay – Turbulence in Stirred Tanks.	
UNIT – V TURBULENT FLOWS	9
Wall Turbulent shear flows - Structure of wall flow - Turbulence characteristics of Boundar	у
layer – Free Turbulence shear flows – Jets and wakes – Plane and axi-symmetric flows	
Total Contact Hours :	45

Course Outcomes:	Upon completion of the course students should be able to:
CO1	Analyse flow with the principles of boundary layer theory
CO2	Distinguish turbulent boundary layer for various types of flows
CO3	Select and use various turbulence models for the appropriate applications
CO4	Apply the statistical theory for averaging various flow parameters
CO5	Differentiate the characteristics of wall shear and free shear flows

C - Principal

Text book:

- 1. Philip G. Hill and Carl R. Peterson, Mechanics and Thermodynamics of Propulsion, Second Edition, Addition Wesley Publishing Company, New York, 2009
- 2. Cohen, H. Rogers, G.F.C. and Saravanamuttoo, H.I.H, Gas Turbine Theory, Longman, 1989
- 3. G.C. Oates, "Aerothermodynamics of Aircraft Engine Components", AIAA Education Series, 1985.

Reference books/other materials/web resources:

- 1. S. M. Yahya, Fundamentals of Compressible Flow. Third edition, New Age International Pvt Ltd, 2003.
- 2. George P. Sutton, Oscar Biblarz. Rocket Propulsion Elements, John Wiley & Sons, 8th Edition, 2010
- 3. Ramamurthy, Rocket Propulsion, Pan Macmillan (India) Ltd, 2010.
- 4. W.P.Gill, H.J.Smith& J.E. Ziurys, "Fundamentals of Internal Combustion Engines asapplied to Reciprocating, Gas turbine & Jet Propulsion Power Plants", Oxford & IBH Publishing Co., 1980.

			CO-PO	CO-PSO Mapping					
PO& PSO / CO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3
CO1	-		1	-	2	-	2	2	2
CO2	2	2	2	1	2	_	3	2	2
CO3	2	2	2	2	2	-	3	3	2
CO4	2	2	2	2	2	-	3	3	2
CO5	2	2	2	2	2	-	2	3	2
Average:	1.6	1.6	1.8	1.7	2	-	2.6	2.6	2

HoD/BOS Chairman

Subject Code	Subject Name	Category	L 3	T 0	P 0	C
TE24014	STEAM GENERATOR TECHNOLOGY	PEC				3
Course Objectiv	ves:					
 To educa significant 	te the students on the types of boilers with their nce.	constructiona	l and	l fun	ction	al
To under	stand the working and design of fuel preparation	units and bo	ilers.			
To introd	uce the concept of boiler design, emission aspec	ts				
To Class:	fy the auxiliary Equipments in design					
To enum	erate the technological design aspect in steam ge	nerator				

UNIT – I BASICS	9
Steam Cycle for Power Generation - Fuel Stoichiometry - Boiler Classification	&
Components - Specifications - Boiler Heat Balance - Efficiency Estimation (Direct	. &
Indirect) – Sankey Diagram	
UNIT – II FUELS AND BOILER TYPES	9
Solid Fuel: Coal Preparation - Pulverization - Fuel feeding arrangements, Fuel Oil: Design	ı of
oil firing system - components - Air regulators, Types of Boilers - Merits & Limitation	ıs -
Specialty of Fluid Bed Boilers – Basic design principles (Stoker, Travelling Grate etc).	
UNIT – III COMPONENTS DESIGN	9
Furnace- Water Wall - Steam Drum - Attemperator - Super heaters - Reheaters -	Air
Preheaters – Economisers - Steam Turbines: Design Aspects of all these	
UNIT – IV AUXILIARY EQUIPMENTS – DESIGN & SIZING	9
Forced Draft & Induced Draft Fans - PA / SA Fans - Water Pumps (Low Pressure & H	igh
Pressure) – Cooling Towers – Softener – DM Plant	
UNIT - V EMISSION ASPECTS	9
Emission Control - Low NOx Burners - Boiler Blow Down - Control & Disposal: Feed W	ater
Deaeration & Deoxygenation - Reverse Osmosis - Ash Handling Systems Design - Ash Handling Systems - Ash	Ash
Disposal- Chimney Design to meet Pollution std - Cooling Water Treatment & Disposal	
Total Contact Hours	45

Course Outcomes:	Upon completion of the course students should be able to:					
CO1	Familiarization with Boiler cycles, components and will have specialized knowledge in steam boiler performance evaluation.					
CO2	Emission related aspects in terms of CO ₂ NOx emission, mitigation etc will make them to realize the impact of Coal / fuel burning in the society					
CO3	Familiarization with Boiler cycles, components and in Design.					
CO4	Apply the statistical theory for averaging various flow parameters					
CO5	Emission related aspects in terms of CO ₂ NOx emission, mitigation etc will make them to realize the impact of Coal / fuel burning in the society					

Text	t Book:
1.	BlokhA.G., Heat Transfer in Steam Boiler Furnace, Hemisphere Publishing Corporation,
	2017
2.	Carl Schields, Boilers: Type, Characteristics and Functions, McGraw Hill Publishers,
	1982.
3.	David Gunn and Robert Horton, Industrial Boilers, Longman Scientific and Technical
	Publication, 1986.

Ref	erence books/other materials/web resources:
1.	Ganapathy V., Industrial Boilers and Heat Recovery Steam Generators, Marcel Dekker Ink, 2003. 5. Howard J.R., Fluidized Bed Technology: Principles and Applications, Adam Hilger, New York, 1983
2.	Mosoon Kwauk, Fluidization Idealized and Bubbleless, with Applications, Science Press, 1992
3.	PrabirBasu, Cen Kefa and Louis Jestin, Boilers and Burners: Design and Theory, Springer, 2000

			CO-PO	CO-PSO Mapping					
PO& PSO / CO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3
CO1	1	2	-	-	-	-	2	2	2
CO2	2	-	-	-	-	-	3	2	2
CO3	1	-	-	-	-	-	3	3	2
CO4	-	-	_	1	2	-	3	3	2
CO5	-	-	1	-	2	-	2	2	3
Average:	0.8	0.4	0.2	0.2	0.8	-	2.6	2.4	2.2

Subject Code	Subject Name	Category	L	T	P	C			
EY24002	FLUIDIZED BED SYSTEMS	PEC	3	0	0	3			
Course Objecti	se Objectives:								
To under	stand the behavior of fluidized beds								
To learn	about the heat transfer process								
To differ	entiate the combustion and gasification, and a	ppreciate the rel	ative	mei	rits				
To design	components of fluidized bed systems								
To under	stand the industrial applications of fluidized b	ed systems							

UNIT - I FLUIDIZED BED BEHAVIOUR	9			
Characterization of bed particles-comparison of different methods of gas-solid conta-	cts.			
Fluidization phenomena - regimes of fluidization - bed pressure drop curve. Two phase a	and			
wellmixed theory of fluidization. Particle entrainment and elutriation - unique features	of			
circulating fluidized beds.				
UNIT – II HEAT TRANSFER	9			
Different modes of heat transfer in fluidized bed-bed to wall heat transfer - gas to solid h	eat			
transfer - radiant heat transfer - heat transfer to immersed surfaces. Methods for improvem	ent			
– external heat exchangers – heat transfer and part load operations.				
UNIT - III COMBUSTION AND GASIFICATION	9			
Fluidized bed combustion and gasification-stages of combustion of particles-performance	ce-			
start –up methods. Pressurized fluidized beds.				
UNIT – IV DESIGN CONSIDERATIONS	9			
Design of distributors-stoichiometric calculations-heat and mass balance-furnace design	gn—			
design of heating surfaces—gas solid separators.				
UNIT - V INDUSTRIAL APPLICATIONS	9			
Physical operations like transportation, mixing of fine powders, heat exchange, coating, dry	ing			
and sizing. Cracking and reforming of hydrocarbons, carbonization, combustion	and			
gasification. Sulphur retention and oxides of nitrogen emission Control.				
Total Contact Hours:	45			

Course Outcomes:	Upon completion of the course students should be able to:				
CO1	Illustrate the behavior of fluidized bed particles and explain the theory				
001	of fluidization.				
CO2	Analyze the heat transfer process in fluidized beds				
CO3	Apply concepts of combustion and gasification in fluidized beds				
CO4	Interpret the design consideration for components of fluidized bed				
CO4	system.				
CO5	Evaluate fluidized bed systems for various industrial applications				

Text Book:

- 1. Howard, J.R., Fluidized Bed Technology: Principles and Applications, Adam Hilger, New York, 1983
- 2. Geldart, D., Gas Fluidization Technology, John Willey and Sons, 1986
- 3. Kunii, D and Levespiel, O., Fluidization Engineering, John Wiley and Son Inc, New York, 1969

Reference books/other materials/web resources:

- 4. Howard, J.R. (Ed), Fluidized Beds: Combustion and Applications, Applied Science Publishers, New York, 1983
- 5. Botteril, J.S.M., Fluid Bed Heat Transfer, Academic Press, London, 1975.

			CO-PO	CO-PSO Mapping					
PO& PSO / CO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3
CO1	3		2	3			3	2	2
CO2	3		3	3			3	3	2
CO3	3		2	3	2		3	3	3
CO4	3		3	3	2		2	3	3
CO5	3		2	3	2		3	2	3
Average:	3		2.4	3	1.2		2.8	2.6	2.6

HoD/BOS Chairman

Reference books/other materials/web resources:

- 1. JA Duffie and WA Beckman: Solar Engineering of Thermal Processes, Third Edition, John Wiley & Sons, 2006.
- 2. Jan F. Kreider, Peter S. Curtiss, Ari Rabl, Heating and Cooling of buildings: Design for Efficiency, Revised Second Edition, CRC Press, 28-Dec-2009.

			CO-PO	CO-PSO Mapping					
PO& PSO / CO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3
CO1	3	2	1	2	-	1	3	2	2
CO2	-	1	1	2	-	1	3	3	3
CO3	(70)	-	2	3		1	3	3	2
CO4	-	-	2	2	-	3	2	3	3
CO5	1		2	1	-	3	3	3	2
Average:	0.8	0.6	1.6	2		1.8	2.8	2.8	2.4

Subject Code	Subject Name	Category	L	T	P 0	C
TE24015	ENERGY EFFICIENT BUILDINGS	PEC	3	0		3
Course Objective	es:	7/1				
To learn th	ne green buildings concepts applicable to alter	nate design				
To be fam:	iliar with basic terminologies related to building	ngs				
To learn th	ne building (air) conditioning techniques					
To know t	he methods to evaluate the performance of bu	ildings				
To incorpo	orate Renewable energy systems in buildings					

UNIT – I	INTRODUCTION	9			
Climate and	Building, Historical perspective, Aspects of green building design - Sustaina	ble			
Site, Water, E	nergy, Materials and IAQ, ECBC Standards				
UNIT – II	LANDSCAPE AND BUILDING ENVELOPES	9			
Energy effici	ent Landscape design – Microclimate, Shading, Arbors, Windbreaks, Xeriscapi	ng,			
	elope - Thermal comfort, Psychrometry, Comfort indices, Thermal Properties				
Building Ma	terials - Thermal Resistance, Thermal Time Constant (TTC), Diurnal H	[eat			
Capacity (D	HC), Thermal Lag, Decrement Factor, Effect of Solar Radiation - Sol	-air			
Temperature,	Processes of heat exchange of building with environment, Insulation				
UNIT – III	UNIT – III PASSIVE HEATING AND COOLING 9				
HVAC intro	duction, Passive Heating - Solar radiation basics, Sun Path Diagram, Di	rect			
Heating, Ind	irect Heating and Isolated heating, Concept of Daylighting, Passive Coolin	g –			
Natural Venti	lation (Stack and Wind), Evaporative Cooling and Radiative Cooling				
UNIT – IV	THERMAL PERFORMANCE OF BUILDINGS	9			
Heat transfer	due to fenestration/infiltration, Calculation of Overall Thermal Transmittar	ice,			
Estimation of	of building loads: Steady state method, network method, numerical method	od,			
correlations,	Thermal Storage integration in buildings				
UNIT – V	RENEWABLE ENERGY IN BUILDINGS	9			
Introduction	of renewable sources in buildings, BIPV, Solar water heating, small w	ind			
turbines, stan	dalone PV systems, Hybrid system – Economics.				
	Total Contact Hours	45			

Course Outcomes:	Upon completion of the course students should be able to:		
CO1	Will be familiar with climate responsive building design and basic		
COF	concepts		
CO2	Will Know the basic terminologies related to buildings		
CO3	Will Know the passive (air) conditioning techniques		
Interpret the design consideration for components of fluidized			
CO4	system.		

Tex	t book:
1.	ASHRAE Handbook -2009 - Fundamentals
2.	Baruch Givoni: Climate considerations in building and Urban Design, John Wiley &
	Sons, 1998
3.	Baruch Givoni: Passive Low Energy Cooling of Buildings by, John Wiley & Sons, 15-
	Jul-1994

Subject Code	Subject Name	Category	L	T	P	C
IC24005	ENGINE POLLUTION AND CONTROL	PEC	3	0	0	3
Course Objectiv	ves:					
To provide	de an insight about effect of engine out emission	s on human h	ealth	and		
environm	nent					
To impar	t the knowledge on various pollutant species for	mations in SI	and	CI e	ngin	e
	ge about various emission measurement technique					
significa	nce					
To provio	de a discernment about various emission control	methods				
To impar	t the knowledge about international and national	driving cycle	es an	d em	issic	n
standards	·					

UNIT – I	AIR POLLUTION – ENGINES		9
Atmospheric	pollution from automotive, stationary engines and	gas turbines, Global warmin	ng
- Greenhouse	effect, Effects of engine pollution on human healt	h and environment.	
UNIT – II	POLLUTANT FORMATION		9
Formation of	Oxides of nitrogen, Carbon monoxide, Hydrocarb	on, Aldehydes, Smoke and	-
	atter emissions. Effects of Engine design and opera		
	pise pollution.		
UNIT – III	EMISSION MEASUREMENT TECHNIQUE	S	9
CO, CO2 - N	on dispersive infrared gas analyzer, NOx - Chemil	uminescent analyzer, HC -	
	tion detector, Smoke - Opacity and filter paper me		ter
– Full flow a	nd Partial flow dilution tunnel, Gas chromatograph	y, Noise measurement.	
UNIT – IV	EMISSION CONTROL TECHNIQUES		9
Engine desig	n modifications, Fuel modification, Evaporative en	nission control, EGR, Air	
injection, The	ermal reactors, Water injection, Common rail direc	t injection and Gasoline dire	ect
injection syst	em, After treatment systems - Catalytic converters	Diesel oxidation catalyst,	
	aps, De-NOx catalysts, SCR systems. Low tempera		
UNIT – V	DRIVING CYCLES AND EMISSION STANI		9
Transient dyr	amometer, Test cells, Driving cycles for emission	measurement, chassis	
	; CVS system, National and International emission		
		Total Contact Hours	: 45

Course Outcomes:	Upon completion of the course students should be able to:
CO1	Understand about atmospheric pollution from engines and its impact on human health and environment
CO2	Understand the formation of emissions in both SI and CI engines.
CO3	Understand the various measurement techniques used globally for the measurement of automotive and stationary engine out emissions.
CO4	Learn the various control methods/techniques used in IC engine to control the engine out emissions
CO5	Learn the transient and steady state driving cycles performed on automotive and stationary engines and emission standards that are followed in the national and international level.

Textbooks:

- . Ganesan V., "Internal Combustion Engines", V Edition, Tata McGraw Hill, 2012
- 2. John. B. Heywood, "Internal Combustion engine fundamentals" McGraw Hill, 1988

Reference books/other materials/web resources:

- 1. Crouse William, Automotive Emission Control, Gregg Division /McGraw-Hill,1980
- 2. Ernest, S., Starkman, Combustion Generated Air Pollutions, Plenum Press, 1980
- 3. George Springer and Donald J Patterson, Engine emissions, Pollutant Formation and Measurement, Plenum press, 2013
- **4.** Obert, E.F., Internal Combustion Engines and Air Pollution, Intext Educational Publishers, Third Edition, 1973
- 5. Pundir B. P., "IC Engines Combustion and Emission" Narosa publishing house, 2010

			CO-PO	Aapping			CC	ing			
PO& PSO / CO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3		
CO1	1	1		1	1	3	2	2	2		
CO2	1			1	1	2	3	2	2		
CO3	1				2		3	3	2		
CO4	1			1	2	1	3	3	2		
CO5	1			1	2		2	2	3		
Average:	1	0.2		0.8	1.6	1.2	2.6	2.4	2.2		

HoD/BOS Chairman

Subject Code	Subject Name	Category	L	Т	P 0	C
TE24016	SOLAR THERMAL TECHNOLOGIES	PEC	3	0		3
Course Objectiv	/es:					
 To clarify 	impression of various solar thermal energy col	lectors				
	t the knowledge on various pollutant species for		and	CIe	ngin	e
	ate the other applications and the devices used t					
	he various solar applications			<u> </u>		
To summ	arize the basic economics of solar energy collec	tion system.				

UNIT – I SOLAR COLLECTORS	9
Collectors: Flat plate: Water, Air - Evacuated tube - Concentrated - Construction - Function	
Suitability – Comparison – Design of Storage Tank - Solar Fluids.	J11 -
UNIT – II SOLAR WATER HEATING SYSTEMS	9
Integral Collector Storage System - Thermosyphon System - Open Loop, Drain Down, Dr	
Back, Antifreeze Systems - Refrigerant Solar Water Heaters - Solar Heated Pools - So	olar
Heated Hot Tubs and Spas	Jiai
UNIT – III SOLAR SPACE CONDITIONING SYSTEMS	9
Liquid Type Solar Heating System With / Without Storage - Heat Storage Configuration	_
Heat Delivery Methods - Air-Type Solar Heating Systems - Solar Refrigeration and	
Conditioning.	AII
UNIT – IV OTHER SOLAR APPLICATIONS	9
Solar Cooking – Distillation - Desalination - Solar Ponds – Solar Passive Architecture – So	
Drying – Solar Chimney.	Star
	9
Application of economic methods to analyze the feasibility of solar systems to decide proje	
policy alternatives - Net energy analysis - and cost requirements for active and passive heat	ing
and cooling - for electric power generation - and for industrial process-heating. Economic	s –
Fixed and variable cost - Payback period - Net Present Value - Internal Rate of Retur	
Carbon credit – Embodied energy analysis	
Total Contact Hours :	45

Course Outcomes:	Upon completion of the course students should be able to:
CO1	Explain the technical and physical principles of different solar collectors
CO2	Measure and evaluate different solar energy technologies through knowledge of the physical function of the devices
CO3	Articulate the technical and economic fundamentals of solar thermal energy conversion useful to society and industry
CO4	Describe the spectrum of possible solar thermal technologies to assist industrial processing or power production
CO5	Communicate technological and socio-economic issues around solar energy in a concise and an accessible way to a target group with basic technical skills.

C- Principal

Duffie, J.A., and Beckman, W.A. Solar Energy Thermal Process - 4 th Edition (2013), John Wiley and Sons, New York, ISBN: 978-0-470-87366-3, Solar Energy Laboratory, University of Wisconsin-Madison, pp. 944 H P Garg, M Dayal, G Furlan, Physics and Technology of Solar Energy-Volume I: Solar Thermal Applications, Springer, 2007 Sukhatme S.P. J K Nayak, Solar Energy, Tata McGraw Hills P Co., ISBN: 9789352607112, 4th Edition, 2017, pp. 568.

Ref	erence books/other materials/web resources:
4.	Charles Christopher Newton - Concentrated Solar Thermal Energy- Published by VDM
	Verlag, 2008
5.	H.P.Garg, S.C.Mullick, A.K.Bhargava, D.Reidal, Solar Thermal Energy Storage Springer,
	2005

			CO-PO	Mapping			CC)-PSO Mappi	pping				
PO& PSO / CO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3				
CO1	1	-	1	-	1	1	3	2	2				
CO2	1	2		-	2	-	2	2	2				
CO3	-	-	-	-	1 .	-	3	3	2				
CO4	-	-	-	-	3	-	2	3	2				
CO5	-	-	3	-	-	-	3	3	3				
Average:	0.4	0.4	0.8	-	1.4	0.2	2.6	2.6	2.2				

HoD/BOS Chairman

2-5

ubject Code	Subject Name	Category	L	Т	P	C
AX24001	ENGLISH FOR RESEARCH PAPER WRITING	-	2	0	0	0
Course Objectiv	ves:					
Teach hor	w to improve writing skills and level of readabi	lity				
Tell abou	t what to write in each section					
Summari	ze the skills needed when writing a Title					
Infer the	skills needed when writing the Conclusion					
Ensure th	e quality of paper at very first-time submission					

UNIT – I INTRODUCTION TO RESEARCH PAPER WRITING	6
Planning and Preparation, Word Order, Breaking up long sentences, Structuring Para	graphs
and Sentences, Being Concise and Removing Redundancy, Avoiding Ambigui	y and
Vagueness	
UNIT – II PRESENTATION SKILLS	6
Clarifying Who Did What, Highlighting Your Findings, Hedging and Crit	cizing,
Paraphrasing and Plagiarism, Sections of a Paper, Abstracts, Introduction	
UNIT – III TITLE WRITING SKILLS	6
Key skills are needed when writing a Title, key skills are needed when writing an A	ostract,
key skills are needed when writing an Introduction, skills needed when writing a Rev	iew of
the Literature, Methods, Results, Discussion, Conclusions, The Final Check	
UNIT – IV RESULT WRITING SKILLS	6
Skills are needed when writing the Methods, skills needed when writing the Results, sk	ills are
needed when writing the Discussion, skills are needed when writing the Conclusions	
UNIT – V VERIFICATION SKILLS	6
Useful phrases, checking Plagiarism, how to ensure paper is as good as it could poss	ibly be
the first- time submission	
Total Contact Hou	rs:30

Course Outcomes:	Upon completion of the course students should be able to:
CO1	Understand that how to improve your writing skills and level of
CO2	readability Learn about what to write in each section
CO3	Understand the skills needed when writing a Title
CO4	Understand the skills needed when writing the Conclusion
CO5	Ensure the good quality of paper at very first-time submission

C Principal

Textbooks:

- 1. Adrian Wallwork, English for Writing Research Papers, Springer New York Dordrecht Heidelberg London, 2011
- 2. Day R How to Write and Publish a Scientific Paper, Cambridge University Press 2006
- 3. Goldbort R Writing for Science, Yale University Press (available on Google Books) 2006

Reference books/other materials/webresources:

1. Highman N, Handbook of Writing for the Mathematical Sciences, SIAM. Highman's book 1998.

		CO-PO Mapping						CO-PSO Mapping			
PO& PSO / CO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO:		
CO1	3	3	2	3	2	-	2	2			
CO2	3	3	2	3	2	-	2	2			
CO3	3	3	2	3	2	-	2	2			
CO4	3	3	2	3	2	-	2	2			
CO5	3	3	2	3	2	-	2	2			
Average:	3	3	2	3	2	-	2	2			

HoD/BOS Chairman

Subject Code	Subject Name	Category	L	T	P	C
AX24002	DISASTER MANAGEMENT	ASTER MANAGEMENT -		0	0	0
Course Objecti	ves:					
• Summar	ize basics of disaster					
• Explain	a critical understanding of key concepts in dis	aster risk reduct	ion a	nd		
humanit	arian response					
	disaster risk reduction and humanitarian resp perspectives	onse policy and	prac	tice	from	
	an understanding of standards of humanitaria e in specific types of disasters and conflict situ		pract	ical		
Develop	the strengths and weaknesses of disaster man	agement approa	ches			

UNIT – I INTRODUCTION	6
Disaster: Definition, Factors and Significance; Difference between Hazard And Disaster;	
Natural and Manmade Disasters: Difference, Nature, Types and Magnitude	
UNIT – II REPERCUSSIONS OF DISASTERS AND HAZARDS	6
Economic Damage, Loss of Human and Animal Life, Destruction Of Ecosystem. Natu	ıral
Disasters: Earthquakes, Volcanisms, Cyclones, Tsunamis, Floods, Droughts And Famir	
Landslides And Avalanches, Man-made disaster: Nuclear Reactor Meltdown, Indust	rial
Accidents, Oil Slicks And Spills, Outbreaks Of Disease And Epidemics, War And Conflicts.	
UNIT – III DISASTER PRONE AREAS IN INDIA	6
Study of Seismic Zones; Areas Prone To Floods and Droughts, Landslides And Avalanch	ies;
Areas Prone To Cyclonic and Coastal Hazards with Special Reference To Tsunami; Po	ost-
Disaster Diseases and Epidemics	
UNIT – IV DISASTER PREPAREDNESS AND MANAGEMENT	6
Preparedness: Monitoring Of Phenomena Triggering a Disaster or Hazard; Evaluation of R	
Application of Remote Sensing, Data from Meteorological And Other Agencies, Me	dia
Reports: Governmental and Community Preparedness.	
UNIT – V RISK ASSESSMENT	6
Disaster Risk: Concept and Elements, Disaster Risk Reduction, Global and National Disa	
Risk Situation. Techniques of Risk Assessment, Global Co-Operation in Risk Assessment	and
Warning, People's Participation in Risk Assessment. Strategies for Survival	
Total Contact Hours :	30

Course Outcomes:	Upon completion of the course students should be able to:
CO1	Ability to summarize basics of disaster
CO2	Ability to explain a critical understanding of key concepts in disaster risk reduction and humanitarian response.
CO3	Ability to illustrate disaster risk reduction and humanitarian response policy and practice from multiple perspectives
CO4	Ability to describe an understanding of standards of humanitarian response and practical relevance in specific types of disasters and conflict situations.
CO5	Ability to develop the strengths and weaknesses of disaster management approaches

Textbooks:

- 1. Goel S. L., Disaster Administration And Management Text And Case Studies", Deep & Deep Publication Pvt. Ltd., New Delhi, 2009.
- 2. NishithaRai, Singh AK, "Disaster Management in India: Perspectives, issues and strategies "'New Royal book Company,2007

Reference books/other materials/web resources:

1. Sahni, PardeepEt.Al.," Disaster Mitigation Experiences And Reflections", Prentice Hall OfIndia, New Delhi, 2001

		CO-PO Mapping						CO-PSO Mapping		
PO& PSO / CO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3	
CO1	3	3	2	3	-	-	2	-	1	
CO2	3	3	3	3	-	- 1	2	-	1	
CO3	3	3	3	3	-	-	2	-	1	
CO4	3	3	2	3	-	-	3	-	1	
CQ5	3	3	2	3	-	- 1	3		1	
Average:	3	3	2.4	3	-	-	2.4		1	

Subject Code	Subject Name	Category	L	T	P	C
AX24003	CONSTITUTION OF INDIA	-	3	0	0	0

Course Objectives:

- Understand the premises informing the twin themes of liberty and freedom from a civil rights perspective
- To address the growth of Indian opinion regarding modern Indian intellectuals' constitutional Role and entitlement to civil and economic rights as well as the emergence nation hood in the early years of Indian nationalism.
- To address the role of socialism in India after the commencement of the Bolshevik Revolutionin1917and its impact on the initial drafting of the Indian Constitution.

UNIT – I	HISTORY OF MAKING OF THE INDIAN CONSTITUTION	6
History, Draf	ting Committee, (Composition & Working)	
UNIT – II	PHILOSOPHY OF THE INDIAN CONSTITUTION	6
Preamble, Sa	lient Features	
UNIT – III	CONTOURS OF CONSTITUTIONAL RIGHTS AND DUTIES	6
Fundamental	Rights, Right to Equality, Right to Freedom, Right against Exploitation, Righ	t to
Freedom of	Religion, Cultural and Educational Rights, Right to Constitutional Remed	ies,
Directive Prin	nciples of State Policy, Fundamental Duties.	
UNIT – IV	ORGANS OF GOVERNANCE	6
Parliament,	Composition, Qualifications and Disqualifications, Powers and Function	ns,
Executive, Pr	resident, Governor, Council of Ministers, Judiciary, Appointment and Transfer	of
Judges, Qual	fications, Powers and Functions	
UNIT – V	LOCAL ADMINISTRATION	6
District's Adı	ministration head: Role and Importance, Municipalities: Introduction, Mayor	and
	ed Representative, CEO, Municipal Corporation. Pachayati raj: Introduction, P	
	t. Elected officials and their roles, CEO Zila Pachayat: Position and role. Blo	
level: Organ	izational Hierarchy(Different departments), Village level:Role of Elected	and
	ficials, Importance of grass root democracy	
	Total Contact Hours :	30

Course Outcomes:	Upon completion of the course students should be able to:			
CO1	Discuss the growth of the demand for civil rights in India for the bulk of			
COI	Indians before the arrival of Gandhi in Indian politics.			
CO1	Discuss the intellectual origins of the framework of argument that			
CO2	informed the conceptualization			
CO3	of social reforms leading to revolution in India			
	Discuss the circumstances surrounding the foundation of the Congress			
COA	Socialist Party[CSP] under the leadership of Jawaharlal Nehru and the			
CO4	eventual failure of the proposal of direct elections through adult			
suffrage in the Indian Constitution.				
CO5	Discuss the passage of the Hindu Code Bill of 1956.			

Textbooks:

- 1. The Constitution of India,1950(Bare Act),Government Publication
- 2. Dr.S.N.Busi, Dr.B. R.Ambedkar framing of Indian Constitution, 1st Edition, 2015

Reference books/other materials/webresources:

- 1. M.P. Jain, Indian Constitution Law, 7th Edn., Lexis Nexis,2014.
- 2. D.D. Basu, Introduction to the Constitution of India, Lexis Nexis, 2015.

		CO-PO Mapping						O-PSO Mapp	ing	
PO& PSO / CO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3	
CO1						2				
CO2						3				
CO3						3				
CO4						3				
CO5						3				
Average:						2.8				

HoD/BOS Chairman

C-0/

Subject Code	Subject Name	Category	L	T	P	C
AX24004	நற்றமிழ்இலக்கியம்	-	2	0	0	0

UNIT – I சங்க இலக்கியம்	6
1. தமிழின் துவக்கநூல் தொல்கொப்பியம் – எழுத்து, சொல், பொருஎ்	π
2.அகநானூறு (82) – இயற்கை இன்னிசை அரங்கம்	
3. குறிஞ்சிப் பாட்டின் மலர்க்காட்சி	
4. புறநானூறு (95,195) – போரை நிறுத்திய ஒளவையார்	
UNIT – II அறநெறித் தமிழ்	6
1. அறநெறி வகுத்த திருவள்ளுவர் அறம் வலியுறுத்தல், அன்பு	டமை
ஒப்புரவறிதல் அறிதல், ஈகை, புகழ்	
2. பிறஅறநூல்கள் - இலக்கியமருந்து – ஏலாதி, சிறுபஞ்சமூலம், திரி)கடுகம்,
ஆசரகோவை (தூய்மையை வலியுறுத்தும் நூல்)	
UNIT – III இரட்டைக் காப்பியங்கள்	6
1. கண்ணகியின் புரட்சி – சிலப்பதிகார வழக்குரை காதை	
2. சமூகசேவை இலக்கியம் மணிமேகலை – சிறைக்கோட்டம்	
அறக்கோட்டமக்கிய காதை	
UNIT – IV அருள்நெறித் தமிழ்	6
1. சிறுபாணாற்றுப்படை —	181
பாரி முல்லைக்குத் தேர் கொடுத்தது,	
பேகன் மயிலுக்குப் போர்வை கொடுத்தது,	
அதியமான் ஒளவைக்கு நல்லிக்கனி கொடுத்தது,	
அரசர் பண்புகள்	
2. நற்றிணை- அன்னைக்குரிய புன்னை சிறப்பு	
3. திருமந்திரம் (617, 618) – இயமம் நியமம் விதிகள்	
4. தர்மசாலையை நிறுவிய வள்ளலார்	
5. புறநானூறு – சிறுவனே வள்ளலானான்	
6. அகநொனூறு (4) – வண்டு	
நற்றிணை(11) – நண்டு	
கலித்தொகை (11) – யானை, புறா	
ஐந்திணை 50 (27) – மான்	
ஆகியவை பற்றிய செய்திகள்	

Total Contact Hours: 30

UNIT – V நவீன தமிழ் இலக்கியம்	6
1. உரைநடைத் தமிழ், - தமிழின் முதல் புதினம், - தமிழின் முதல்	
சிறுகதை, - கட்டுரை இலக்கியம், - பயண இலக்கியம், - நாடகம்,	
2. நாட்டு விடுதலைப் போரட்டமும் தமிழ்இலக்கியமும்,	
3. சமுதாய் விடுதலையும் தமிழ் இலக்கியமும்,	
பெண்விடுதலையும் விளிம்பு நிலையினரின் மேம்பாட்டில் தமிழ்	
இலக்கியமும்,	
5. அறிவியல்தமிழ்,	
6. இணையத்தில் தமிழ்,	
7. சுற்றுச்சூழல் மேம்பொட்டில் தமிழ் இலக்கியம்.	

Text	books:
1.	தமிழ் இணையக் கல்விக்கழகம் (Tamil Virtual University) - www.tamilvu.org
2.	தமிழ் விக்கிப்பீடியா (Tamil Wikipedia) -https://ta.wikipedia.org
3.	தர்மபுர ஆதீன வெளியீடு
Refe	erence books/other materials/web resources:
1.	வாழ்வியல் களஞ்சியம் – தமிழ்ப்பல்கலைக் கழகம், தஞ்சாவூர்
2.	தமிழ்கலைக் களஞ்சியம் – தமிழ்வளர்ச்சித் துறை
	(thamilyalarchithurai.com)
3.	அறிவியல் களஞ்சியம் – தமிழ்ப் பல்கலைக்கழகம், தஞ்சாவூர்.

Subject Code	Subject Name	Category	L	T	P	C
OCE24001	INTEGRATED WATER RESOURCES MANAGEMENT	OEC	3	0	0	3

Course Objectives:

- To introduce students to the fundamental concepts and principles of Integrated Water Resources Management (IWRM).
- To explore the economic aspects of water resources management, including costbenefit analysis and resource allocation.
- To examine the role of public-private partnerships in effective water governance and infrastructure development.
- To analyze the interconnections between water and key sectors such as health and food security.
- To familiarize students with legal and regulatory frameworks relevant to water management at national and international levels.

UNIT – I CONTEXT FOR IWRM

9

Water as a global issue: key challenges – Definition of IWRM within the broader context of development – Key elements of IWRM - Principles – Paradigm shift in water management - Complexity of the IWRM process – UN World Water Assessment - SDGs.

UNIT – II WATER ECONOMICS

9

Economic view of water issues: economic characteristics of water good and services – Nonmarket monetary valuation methods – Water economic instruments – Private sector involvement in water resources management: PPP objectives, PPP models, PPP processes, PPP experiences through case studies

UNIT – III LEGAL AND REGULATORY SETTINGS

9

Basic notion of law and governance: principles of international and national law in the area of water management - Understanding UN law on non-navigable uses of international water courses - International law for groundwater management - World Water Forums - Global Water Partnerships - Development of IWRM in line with legal and regulatory framework.

UNIT – IV WATER AND HEALTH WITHIN THE IWRM CONTEXT

9

Links between water and health: options to include water management interventions for health – Health protection and promotion in the context of IWRM – Global burden of Diseases - Health impact assessment of water resources development projects – Case studies

UNIT – V AGRICULTURE IN THE CONCEPT OF IWRM

9

Water for food production: 'blue' versus 'green' water debate — Water foot print - Virtual water trade for achieving global water and food security — Irrigation efficiencies, irrigation methods - current water pricing policy—scope to relook pricing.

Total Contact Hours: 45

Course Outcomes:	Upon completion of the course students should be able to:
CO1	Describe the context and principles of IWRM; Compare the
COI	conventional and integrated ways of water management.
CO2	Select the best economic option among the alternatives; illustrate the
COZ	pros and cons of PPP through case studies.
CO3	Apply law and governance in the context of IWRM.
CO4	Discuss the linkages between water-health; develop a HIA framework.
COS	Analyse how the virtual water concept pave way to alternate policy
CO5	options.

Tex	tbooks:
1.	Cech Thomas V., Principles of water resources: history, development, management and
	policy. John Wiley and Sons Inc., New York. 2003.
2.	Mollinga .P. etal "Integrated Water Resources Management", Water in South Asia
	Volume I, Sage Publications, 2006.
3.	Technical Advisory Committee, Integrated Water Resources management, Technical
	Advisory Committee Background Paper No: 4. Global water partnership, Stockholm,
	Sweden. 2002

	Reference books/other materials/webresources:					
Ī	1.	Technical Advisory Committee, Dublin principles for water as reflected in comparative				
l		assessment of institutional and legal arrangements for Integrated Water Resources				
Г		Management Technical Advisory Committee Rackground naner No. 3 Global water				

Management, Technical Advisory Committee Background paper No: 3. Global water partnership, Stockholm, Sweden. 1999

Technical Advisory Committee, Effective Water Governance". Technical Advisory Committee Background paper No: 7. Global water partnership, Stockholm, Sweden, 2003.

			СО-РО	CO-PO Mapping			C	ping		
PO& PSO / CO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3	
CO1	3	3	2	3			2		1	
CO2	3	3	3	3			2		1	
CO3	3	3	3	3			2		1	
CO4	3	3	2	3			3		1	
CO5	3	3	2	3			3		1	
Average:	3	3	2.6	3			2.4		1	

Subject Code	Subject Name	Category	L	T	P	C
OCE24002	WATER, SANITATION AND HEALTH	OEC	3	0	0	3

Course Objectives:

- To understand the current challenges and managerial practices in the water and sanitation sectors.
- To explore the linkages between water management and public health outcomes in developing regions.
- To analyze the effectiveness of existing health and sanitation initiatives in addressing waterborne diseases.
- To evaluate the impact of inadequate water and sanitation infrastructure on community health.
- To identify sustainable strategies and policy interventions to improve water, sanitation, and health outcomes in emerging economies.

UNIT – I FUNDAMENTALS WASH

9

Meanings and Definition: Safe Water- Health, Nexus: Water- Sanitation - Health and Hygiene - Equity issues-Water security - Food Security. Sanitation And Hygiene (WASH) and Integrated Water Resources Management (IWRM) - Need and Importance of WASH

UNIT – II MANAGERIAL IMPLICATIONS AND IMPACT

9

Third World Scenario – Poor and Multidimensional Deprivation--Health Burden in Developing Scenario -Factors contribute to water, sanitation and hygiene related diseases-Social: Social Stratification and Literacy Demography: Population and Migration- Fertility – MortalityEnvironment: Water Borne-Water Washed and Water Based Diseases - Economic: Wage - Water and Health Budgeting -Psychological: Non-compliance - Disease Relapse - Political: Political Will

UNIT – III CHALLENGES IN MANAGEMENT AND DEVELOPMENT

9

Common Challenges in WASH - Bureaucracy and Users- Water Utilities -Sectoral Allocation:-Infrastructure- Service Delivery: Health services: Macro and Micro- level: Community and Gender Issues- Equity Issues - Paradigm Shift: Democratization of Reforms and Initiatives.

UNIT – IV GOVERNANCE

9

Public health -Community Health Assessment and Improvement Planning (CHA/CHIP)-Infrastructure and Investments on Water, (WASH) - Cost Benefit Analysis - Institutional Intervention-Public Private Partnership - Policy Directives - Social Insurance -Political Will vs Participatory Governance

UNIT – V INITIATIVES

9

Management vs Development -Accelerating Development- Development Indicators -Inclusive Development-Global and Local- Millennium Development Goal (MDG) and Targets - Five Year Plans - Implementation - Capacity Building - Case studies on WASH. T

Total Contact Hours: 45

Course Outcomes:	omes: Upon completion of the course students should be able to:			
CO1	Capture to fundamental concepts and terms which are to be applied and			
COI	understood all through the study			
CO2	Comprehend the various factors affecting water sanitation and health			
COZ	through the lens of third world scenario			
CO3	Critically analyse and articulate the underlying common challenges in			
COS	water, sanitation and health.			
CO4	Acquire knowledge on the attributes of governance and its say on water			
CO4	sanitation and health.			

	Gain an overarching insight in to the aspects of sustainable resource
CO5	management in the absence of a clear level playing field in the
	developmental aspects

Tex	tbooks:
1.	Bonitha R., Beaglehole R., Kjellstorm, 2006, "Basic Epidemiology", 2nd Edition, World
	Health Organization.
2.	Van Note Chism, N. and Bickford, D. J. (2002), Improving the environment for learning:
	An expanded agenda. New Directions for Teaching and Learning, 2002: 91-98. doi:
	10.1002/tl.83Improving the Environment for learning: An Expanded Agenda
3.	National Research Council. Global Issues in Water, Sanitation, and Health: Workshop
	Summary. Washington, DC: The National Academies Press, 2009.

Refe	erence books/other materials/webresources:
1.	Sen, Amartya 1997. On Economic Inequality. Enlarged edition, with annex by
	JamesFoster and Amartya Sen, Oxford: Claredon Press, 1997.
2.	Intersectoral Water Allocation Planning and Management, 2000, World Bank Publishers
	www. Amazon.com

			CO-PO	CO-PSO Mapping					
PO& PSO / CO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO
CO1	2	2	3	3	3		3	2	2
CO2	3	3	3	3	3		3	3	3
CO3	2	3	3	3	2		3	3	2
CO4	3	1	2	2	3		3	3	2
CO5	2	3	2	3	2		3	1	2
Average:	2.4	2.4	2.6	2.8	2.6		3	2.4	2.2

Subject Code	Subject Name	Category	L	Т	P	C
OCE24003	PRINCIPLES OF SUSTAINABLE DEVELOPMENT	OEC	3	0	0	3

Course Objectives:

- To introduce the key environmental, social, and economic dimensions of sustainability.
- To examine the evolution of sustainability principles through major global landmark events and summits.
- To analyze the interrelationship between sustainable development goals (SDGs) and global development challenges.
- To promote critical thinking about current unsustainable practices and their long-term impacts.
- To cultivate an action-oriented mindset toward sustainable development through policy, innovation, and behavioral change.

UNIT – I SUSTAINABILITY AND DEVELOPMENT CHALLEGES

9

Definition of sustainability – environmental, economical and social dimensions of sustainability - sustainable development models – strong and weak sustainability – defining development millennium development goals – mindsets for sustainability: earthly, analytical, precautionary, action and collaborative– syndromes of global change: utilisation syndromes, development syndromes, and sink syndromes – core problems and cross cutting Issues of the 21 century - global, regional and local environmental issues – social insecurity - resource degradation – climate change – desertification.

UNIT – II PRINCIPLES AND FRAME WORK

9

History and emergence of the concept of sustainable development - our common future - Stockholm to Rio plus 20- Rio Principles of sustainable development - Agenda 21 natural step peoples earth charter - business charter for sustainable development -UN Global Compact - Role of civil society, business and government - United Nations' 2030 Agenda for sustainable development - 17 sustainable development goals and targets, indicators and intervention areas

UNIT – III SUSTAINABLE DEVELOPMENT AND WELLBEING

9

The Unjust World and inequities - Quality of Life - Poverty, Population and Pollution - Combating Poverty - - Demographic dynamics of sustainability - Strategies to end Rural and Urban Poverty and Hunger - Sustainable Livelihood Framework- Health, Education and Empowerment of Women, Children, Youth, Indigenous People, Non-Governmental Organizations, Local Authorities and Industry for Prevention, Precaution, Preservation and Public participation.

UNIT – IV SUSTAINABLE SOCIO-ECONOMIC SYSTEMS

9

Sustainable Development Goals and Linkage to Sustainable Consumption and Production – Investing in Natural Capital- Agriculture, Forests, Fisheries - Food security and nutrition and sustainable agriculture- Water and sanitation - Biodiversity conservation and Ecosystem integrity –Ecotourism - Sustainable Cities – Sustainable Habitats- Green Buildings - Sustainable Transportation — Sustainable Mining - Sustainable Energy- Climate Change – Mitigation and Adaptation - Safeguarding Marine Resources - Financial Resources and Mechanisms

UNIT – V | ASSESSING PROGRESS AND WAY FORWARD

9

Nature of sustainable development strategies and current practice- Sustainability in global, regional and national context –Approaches to measuring and analysing sustainability–limitations of GDP- Ecological Footprint- Human Development Index- Human Development Report – National initiatives for Sustainable Development - Hurdles to Sustainability - Science and Technology for sustainable development –Performance indicators of sustainability and

HoD/BOS Chairman

Assessment mechanism – Inclusive Green Growth and Green Economy – National Sustainable Development Strategy Planning and National Status of Sustainable Development Goals

Total Contact Hours: 45

Course Outcomes:	Upon completion of the course students should be able to:
CO1	Explain and evaluate current challenges to sustainability, including modern world social, environmental, and economic structures and crises.
CO2	Identify and critically analyze the social environmental, and economic dimensions of sustainability in terms of UN Sustainable development goals
CO3	Develop a fair understanding of the social, economic and ecological linkage of Human well being, production and consumption
CO4	Evaluate sustainability issues and solutions using a holistic approach that focuses on connections between complex human and natural systems.
CO5	Integrate knowledge from multiple sources and perspectives to understand environmental limits governing human societies and economies and social justice dimensions of sustainability

Text	tbooks:
1.	Tom Theis and Jonathan Tomkin, Sustainability: A Comprehensive Foundation, Rice
	University, Houston, Texas, 2012
2.	A guide to SDG interactions: from science to implementation, International Council for
	Science, Paris,2017
3.	Karel Mulder, Sustainable Development for Engineers - A Handbook and Resource
	Guide, Rouledge Taylor and Francis, 2017

Refe	erence books/other materials/webresources:
1.	The New Global Frontier - Urbanization, Poverty and Environmentin the 21st Century -
	George Martine, Gordon McGranahan, Mark Montgomery and Rogelio Fernández Castilla,
	IIED and UNFPA, Earthscan, UK, 2008
2.	Nolberto Munier, Introduction to Sustainability: Road to a Better Future, Springer, 2006
3.	Barry Dalal Clayton and Stephen Bass, Sustainable Development Strategies- a resource
	book", Earthscan Publications Ltd, London, 2002.

PO& PSO / CO			CO-PO	CO-PSO Mapping					
	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3
CO1	2	2	3	3	3		3	3	2
CO2	3	3	3	3	3		3	3	3
CO3	2	3	2	3	2	-	2	3	2
CO4	3_	1	2	2	3		1	3	2
CO5	2	3	2	3	2		3	1	2
Average:	2.6	2.4	2.4	2.8	2.6		2.4	2.6	2.2

Subject Code			Subjec	et Na	me		Categor	y	L	Т	P	C
OCE24004			NME SSES		L IMPACT NT		OEC		3	0	0.	3
Course Objectiv	ves:											
To introc	duce the	e concept	and p	urpos	e of Environi	mental	Clearanc	ce a	nd i	its le	gal	and
regulator	y frame	work.										
To fami	liarize	students	with	the	step-by-step	meth	odology	of	ÇOI	nduc	ting	an
Environn	nental I	mpact Ass	essme	nt (El	IA).							

- To provide knowledge on various environmental prediction tools and modeling techniques used in EIA.
- To develop understanding of how to formulate and implement an effective Environmental Management Plan (EMP).
- To analyze real-world case studies to understand the practical application and challenges of EIA in various sectors.

	
UNIT – I INTRODUCTION	9
Historical development of Environmental Impact Assessment (EIA). Environme	ntal
ClearanceEIA in project cycle. legal and regulatory aspects in India – types and limitation	
EIA -EIA process- screening - scoping - terms of reference in EIA- setting - analysi	
mitigation. Cross sectoral issues –public hearing in EIA- EIA consultant accreditation.	
UNIT - II IMPACT INDENTIFICATION AND PREDICTION	9
Matrices – networks – checklists – cost benefit analysis – analysis of alternatives – ex	
systems in EIA. prediction tools for EIA – mathematical modeling for impact prediction	
assessment of impacts – air – water – soil – noise – biological — cumulative impact assessr	
UNIT – III SOCIO-ECONOMIC IMPACT ASSESSMENT	_
	9
Socio-economic impact assessment - relationship between social impacts and change	
community and institutional arrangements. factors and methodologies- individual and fan	nily
level impacts. communities in transition-rehabilitation	
UNIT – IV EIA DOCUMENTATION AND ENVIRONMENTAL	9
MANAGEMENT PLAN	
Environmental management plan - preparation, implementation and review - mitigation	and
rehabilitation plans – policy and guidelines for planning and monitoring programmes – p	
project audit - documentation of EIA findings - ethical and quality aspects of environmentation	
impact assessment	
UNIT - V CASE STUDIES	9
Mining, power plants, cement plants, highways, petroleum refining industry, storage	8
handling of hazardous chemicals, common hazardous waste facilities, CETPs, CMSWI	
building and construction project	,,,,,
Total Contact Hours	45
Total Contact Flours	45

C- Principal

Course Outcomes:	Upon completion of the course students should be able to:
CO1	Understand need for environmental clearance, its legal procedure, need
COI	of EIA, its types, stakeholders and their role
CO2	Understand various impact identification methodologies, prediction
CO2	techniques and model of impacts on various environments
CO3	Understand relationship between social impacts and change in
COS	community due to development activities and rehabilitation methods
CO4	Document the EIA findings and prepare environmental management
CO4	and monitoring plan
COE	Identify, predict and assess impacts of similar projects based on case
CO5	studies

Text	tbooks:
1.	EIA Notification 2006 including recent amendments, by Ministry of Environment, Forest
	and Climate Change, Government of India
2.	Sectoral Guidelines under EIA Notification by Ministry of Environment, Forest and
	Climate Change, Government of Indi
3.	Canter, L.W., Environmental Impact Assessment, McGraw Hill, New York. 1996

Refe	erence books/other materials/webresources:
1.	Lawrence, D.P., Environmental Impact Assessment – Practical solutions to recurrent
	problems, Wiley-Interscience, New Jersey. 2003
2.	Lee N. and George C. 2000. Environmental Assessment in Developing and Transitional
	Countries. Chichester: Willey
3.	World Bank – Source book on EIA, 1999

		CO-PO Mapping CO-							-PSO Mapping		
PO& PSO / CO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3		
CO1							2				
CO2	3	2	3	2	2	2		2	2		
CO3		2	3	2	2	2		2			
CO4			3		3	2		2	2		
CO5	3			2							
Average:	1.2	0.8	1.8	1.2	1.4	1.2	0.4	1.2	0.8		

Subject Code	Subject Name	Category	L	T	P	C
OIC24001	BLOCKCHAIN TECHNOLOGIES	OEC	3	0	0	3

Course Objectives:

- To introduce the fundamental concepts and architecture of Blockchain technology.
- To provide an understanding of how Blockchain ensures security, transparency, and immutability.
- To explore various applications of Blockchain across different domains such as finance, healthcare, supply chain, etc.
- To differentiate between public and private Blockchain frameworks and their use cases.
- To develop practical knowledge of smart contracts and their implementation within Blockchain environments.

UNIT - I INTRODUCTION OF CRYPTOGRAPHY AND BLOCKCHAIN Introduction to Blockchain, Blockchain Technology Mechanisms & Networks, Blockchain Origins, Objective of Blockchain, Blockchain Challenges, Transactions and Blocks, P2P Systems, Keys as Identity, Digital Signatures, Hashing, and public key cryptosystems, private vs. public Blockcha UNIT - II BITCOIN AND CRYPTOCURRENCY Introduction to Bitcoin, The Bitcoin Network, The Bitcoin Mining Process, Mining Developments, Bitcoin Wallets, Decentralization and Hard Forks, Ethereum Virtual Machine (EVM), Merkle Tree, Double-Spend Problem, Blockchain and Digital Currency, Transactional Blocks, Impact of Blockchain Technology on Cryptocurrency UNIT - III INTRODUCTION TO ETHEREUM Introduction to Ethereum, Consensus Mechanisms, Metamask Setup, Ethereum Accounts, , Transactions, Receiving Ethers, Smart Contracts INTRODUCTION TO HYPERLEDGER AND SOLIDITY UNIT - IV **PROGRAMMING** Introduction to Hyperledger, Distributed Ledger Technology & its Challenges, Hyperledger & Distributed Ledger Technology, Hyperledger Fabric, Hyperledger Composer. Solidity -Language of Smart Contracts, Installing Solidity & Ethereum Wallet, Basics of Solidity,

Layout of a Solidity Source File & Structure of Smart Contracts, General Value Types.

	UNIT – V	BLOCKCH	AIN APPLICATIONS	;		9
ĺ	Internet of Th	ings, Medical	Record Management S	ystem, Domain Name	Service and Future	of

Blockchain, Alt Coins.

Total Contact Hours: 45

Course Outcomes:	Upon completion of the course students should be able to:
CO1	Understand and explore the working of Blockchain technology
CO2	Analyze the working of Smart Contracts
CO3	Understand and analyze the working of Hyperledger
CO4	Apply the learning of solidity to build de-centralized apps on Ethereum
CO5	Develop applications on Blockchain

extbooks:

- 1. Imran Bashir, "Mastering Blockchain: Distributed Ledger Technology, Decentralization, and Smart Contracts Explained", Second Edition, Packt Publishing, 2018
- 2. Narayanan, J. Bonneau, E. Felten, A. Miller, S. Goldfeder, "Bitcoin and Cryptocurrency Technologies: A Comprehensive Introduction" Princeton University Press, 2016
- 3. Antonopoulos, Mastering Bitcoin, O'Reilly Publishing, 2014.

Reference books/other materials/webresources:

- 1. Antonopoulos and G. Wood, "Mastering Ethereum: Building Smart Contracts and Dapps", O'Reilly Publishing, 2018
- 2. D. Drescher, Blockchain Basics. Apress, 2017

			CO-PO	Mapping			C	O-PSO Mapp	oing
PO& PSO / CO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3
CO1	2	1	3	2	2	3			
CO2	2	1	2	3	2	2			
CO3	2	1	3	1	2	1			
CO4	2	1	2	3	2	2			
CO5									
Average:	1.6	0.8	2	1.8	1.6	1.6			

HoD/BOS Chairman

- Princinal

Subject Code	Subject Name	Category	L 3	T	P	C
OIC24002	DEEP LEARNING	OEC		0	0	3
Course Objectiv	ves:					
Develop	and Train Deep Neural Networks.					
Develop recognition	a CNN, R-CNN, Fast R-CNN, Faster-R-Cl	NN, Mask-RCNN	for d	etect	ion a	ınd
Build and	d train RNNs, work with NLP and Word En	nbeddings				- 1
The inter	nal structure of LSTM and GRU and the di	ifferences between	then	1		
The Auto Encoders for Image Processing						

UNIT – I DEEP LEARNING CONCEPTS

9

Fundamentals about Deep Learning. Perception Learning Algorithms. Probabilistic modelling. Early Neural Networks. How Deep Learning different from Machine Learning. Scalars. Vectors. Matrixes, Higher Dimensional Tensors. Manipulating Tensors. Vector Data. Time Series Data. Image Data. Video Data.

UNIT – II NEURAL NETWORKS

9

About Neural Network. Building Blocks of Neural Network. Optimizers. Activation Functions. Loss Functions. Data Pre-processing for neural networks, Feature Engineering. Overfitting and Underfitting. Hyperparameters.

UNIT – III CONVOLUTIONAL NEURAL NETWORK

9

About CNN. Linear Time Invariant. Image Processing Filtering. Building a convolutional neural network. Input Layers, Convolution Layers. Pooling Layers. Dense Layers. Back propagation Through the Convolutional Layer. Filters and Feature Maps. Back propagation Through the Pooling Layers. Dropout Layers and Regularization. Batch Normalization. Various Activation Functions. Various Optimizers. LeNet, AlexNet, VGG16, ResNet. Transfer Learning with Image Data. Transfer Learning using Inception Oxford VGG Model, Google Inception Model, Microsoft ResNet Model. RCNN, Fast R-CNN, Faster R-CNN, Mask-RCNN, YOLO

UNIT – IV NATURAL LANGUAGE PROCESSING USING RNN

9

About NLP & its Toolkits. Language Modelling. Vector Space Model (VSM). Continuous Bag of Words (CBOW). Skip-Gram Model for Word Embedding. Part of Speech (PoS) Global Cooccurrence Statistics—based Word Vectors. Transfer Learning. Word2Vec. Global Vectors for Word Representation GloVe. Backpropagation Through Time. Bidirectional RNNs (BRNN). Long Short Term Memory (LSTM). Bi-directional LSTM. Sequence-to-Sequence Models (Seq2Seq). Gated recurrent unit GRU.

UNIT – V DEEP REINFORCEMENT & UNSUPERVISED LEARNING

9

About Deep Reinforcement Learning. Q-Learning. Deep Q-Network (DQN). Policy Gradient Methods. Actor-Critic Algorithm. About Autoencoding. Convolutional Auto Encoding. Variational Auto Encoding. Generative Adversarial Networks. Auto encoders for Feature Extraction. Auto Encoders for Classification. Denoising Auto encoders. Sparse Auto encoders

Total Contact Hours: 45

HoD/BOS Chairman

Course Outcomes:	Upon completion of the course students should be able to:					
C01	Feature Extraction from Image and Video Data					
CO2	Implement Image Segmentation and Instance Segmentation in Images					
CO3	Implement image recognition and image classification using a pretrained network (Transfer Learning)					
CO4	Traffic Information analysis using Twitter Data					
CO5	Autoencoder for Classification & Feature Extraction					

Tex	tbooks:
1.	Deep Learning A Practitioner's Approach Josh Patterson and Adam Gibson O'Reilly
	Media, Inc.2017
2.	Learn Keras for Deep Neural Networks, Jojo Moolayil, Apress, 2018
3.	Deep Learning Projects Using Tensor Flow 2, Vinita Silaparasetty, Apress, 2020

Ref	Reference books/other materials/webresources:					
1.	1. Deep Learning with Python, FRANÇOIS CHOLLET, MANNING SHELTER					
	ISLAND,2017					
2.	Pro Deep Learning with Tensor Flow, Santanu Pattanayak, Apress, 2017					

	CO-PO Mapping CO-PSC					O-PSO Mapp	O Mapping		
PO& PSO / CO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3
CO1	2	2	3	3	3		3	2	2
CO2	3	3	3	3	3		3	3	3
CO3	2	3	3	3	2		3	3	2
CO4	3	1	2	2	3		3	3	2
CO5	2	3	2	3	2		3	1	2
Average:	2.4	2.4	2.6	3	2.6		3	2.4	2.2

Subject Code	Subject Name	Category	L	Т	P	C
OBA24001	SUSTAINABLE MANAGEMENT	OEC	3	0	0	3

Course Objectives:

- To introduce students to the fundamental concepts and principles of corporate sustainability.
- To examine the environmental and socio-technical impacts of organizational activities.
- To explore the interconnection between environmental and social performance and business competitiveness.
- To familiarize students with various sustainability approaches, models, and frameworks used in corporate contexts.
- To develop the ability to apply sustainability assessment methods within organizational strategies and decision-making processes.

UNIT – I MANAGEMENT OF SUSTAINABILITY

Management of sustainability -rationale and political trends: An introduction to sustainability management, International and European policies on sustainable development, theoretical pillars in sustainability management studies.

UNIT – II CORPORATE SUSTAINABILITY AND RESPONSIBILITY

Corporate sustainability parameter, corporate sustainability institutional framework, integration of sustainability into strategic planning and regular business practices, fundamentals of stakeholder engagement

UNIT – III SUSTAINABILITY MANAGEMENT: STRATEGIES AND APPROACHES

Corporate sustainability management and competitiveness: Sustainability-oriented corporate strategies, markets and competitiveness, Green Management between theory and practice, Sustainable Consumption and Green Marketing strategies, Environmental regulation and strategic postures; Green Management approaches and tools; Green engineering: clean technologies and innovation processes; Sustainable Supply Chain Management and Procurement

UNIT – IV SUSTAINABILITY AND INNOVATION 9

Socio-technical transitions and sustainability, Sustainable entrepreneurship, Sustainable pioneers in green market niches, Smart communities and smart specializations.

UNIT – V	SUSTAINABLE MANAGEMENT OF RESOURCES,	9
	COMMODITIES AND COMMONS	

Energy management, Water management, Waste management, Wild Life Conservation, Emerging trends in sustainable management, Case Studies.

Total Contact Hours: 45

Course Outcomes:	Upon completion of the course students should be able to:				
CO1	An understanding of sustainability management as an approach to aid in evaluating and minimizing environmental impacts while achieving the expected social impact.				
CO2	An understanding of corporate sustainability and responsible Business Practices				
CO3	Knowledge and skills to understand, to measure and interpret sustainability performances				

CO4	Knowledge of community many	-	s in su	ıstainable	business	and
CO5	Deep underst		manage	ment of	resources	and

Tex	tbooks:
1.	Daddi, T., Iraldo, F., Testa, Environmental Certification for Organizations and Products:
	Management, 2015
2.	Christian N. Madu, Handbook of Sustainability Management 2012
3.	Petra Molthan-Hill, The Business Student's Guide to Sustainable Management: Principles
	and Practice, 2014

Ref	erence books/other materials/webresources:	
1.	Margaret Robertson, Sustainability Principles and Practice, 2014	
2.	Peter Rogers, An Introduction to Sustainable Development, 2006	

	CO-PO Mapping					CO-PSO Mapping			
PO& PSO / CO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3
CO1	3	3	2	1	2	2			
CO2	3	2	2	2	1	2			
CO3	3	3	1	2	2	3			
CO4	3	3	2	1	1	2			
CO5	3	3	2	1	2	2			
Average:	3	2.8	1.8	1.4	1.6	2.2			

Subject Code	Subject Name	Category	L	Т	P	C
OBA24002	MICRO AND SMALL BUSINESS MANAGEMENT	OEC	3	Ō	0	3

Course Objectives:

- To familiarize students with the fundamental theories and principles of small business management.
- To explore the key components of planning, organizing, financing, and operating a small business.
- To understand the legal and regulatory frameworks affecting small businesses.
- To analyze the impact of legal issues on small business operations and decision-making.
- To encourage entrepreneurial thinking by examining case studies and real-world practices in small business environments.

UNIT - I INTRODUCTION TO SMALL BUSINESS

9

Creation, Innovation, entrepreneurship and small business - Defining Small Business -Role of Owner - Manager - government policy towards small business sector -elements of entrepreneurship -evolution of entrepreneurship -Types of Entrepreneurship - social, civic, corporate - Business life cycle - barriers and triggers to new venture creation - process to assist start ups - small business and family business

UNIT – II SCREENING THE BUSINESS OPPORTUNITY AND FORMULATING THE BUSINESS PLAN

9

Concepts of opportunity recognition; Key factors leading to new venture failure; New venture screening process; Applying new venture screening process to the early stage small firm Role planning in small business – importance of strategy formulation – management skills for small business creation and development.

UNIT – III BUILDING THE RIGHT TEAM AND MARKETING STRATEGY

9

Management and Leadership – employee assessments – Tuckman's stages of group development - The entrepreneurial process model - Delegation and team building - Comparison of HR management in small and large firms - Importance of coaching and how to apply a coaching model. Marketing within the small business - success strategies for small business marketing - customer delight and business generating systems, - market research, - assessing market performance- sales management and strategy - the marketing mix and marketing strategy

UNIT – IV FINANCING SMALL BUSINESS

9

Main sources of entrepreneurial capital; Nature of 'bootstrap' financing - Difference between cash and profit - Nature of bank financing and equity financing - Funding-equity gap for small firms. Importance of working capital cycle - Calculation of break-even point - Power of gross profit margin- Pricing for profit - Credit policy issues and relating these to cash flow management and profitability

UNIT – V VALUING SMALL BUSINESS AND CRISIS MANAGEMENT

q

Causes of small business failure - Danger signals of impending trouble - Characteristics of poorly performing firms - Turnaround strategies - Concept of business valuation - Different valuation measurements - Nature of goodwill and how to measure it - Advantages and disadvantages of buying an established small firm - Process of preparing a business for sale

Total Contact Hours: 45

Rrincipal

Course Outcomes:	Upon completion of the course students should be able to:
CO1	Familiarise the students with the concept of small business
CO2	In depth knowledge on small business opportunities and challenges
CO3	Ability to devise plans for small business by building the right skills and marketing strategies
CO4	Identify the funding source for small start ups
CO5	Business evaluation for buying and selling of small firms

Textbooks:

- 1. Hankinson, A. (2000). "The key factors in the profile of small firm owner-managers that influence business performance. The South Coast Small Firms Survey, 1997-2000." Industrial and Commercial Training 32(3):94-98.
- 2. Parker,R.(2000). "Small is not necessarily beautiful: An evaluation of policy support for small and medium-sized enterprise in Australia." Australian Journal of Political Science 35(2):239-253.

Reference books/other materials/webresources:

1. Journal articles on SME's.

PO& PSO / CO		CO-PO Mapping						CO-PSO Mapping			
	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3		
CO1	2	2	1	1	-						
CO2	3	3	3	3	2	3					
CO3	3	3	2	2	3	3					
CO4	3	2	2	2	1	1					
CO5	3	2	2	3	2	1					
Average:	2.8	2.4	2	2.2	1.6	1.6					

HoD/BOS Chairman

Rrincipal

Subjec	et Code	Subject Name	Category	L	T	P	C
OBA	24003	INTELLECTUAL PROPERTY RIGHTS	OEC	3	0	0	3
Course	Objectiv	/es:					
		le foundational knowledge of Intellectual Propert h as patents, trademarks, copyrights, and trade se		R), iı	nelue	ling	
	To unders property.	stand the legal and procedural aspects of acquiring	ng and protec	ting	intel	lectu	al
		re national and international frameworks governings, and organizations like WIPO.	ng IPR, inclu	ding	trea	ties,	
	To exami various ir	ne case studies to understand the strategic use andustries.	d enforcemen	nt of	IPR	in	
		uce the concept of IPR valuation and its role in coetitive advantage.	ommercializa	ation	, lice	ensin	g,

UNIT - I INTRODUCTION	9
Intellectual property rights - Introduction, Basic concepts, Patents, Copyrights, Trademarks,	
Trade Secrets, Geographic Indicators; Nature of Intellectual Property, Technological Resear	
Inventions and Innovations, History - the way from WTO to WIPO, TRIPS	
UNIT – II PROCESS	9
New Developments in IPR, Procedure for grant of Patents, TM, GIs, Patenting under Patent	
Cooperation Treaty, Administration of Patent system in India, Patenting in foreign countries	
UNIT - III STATUTES	9
International Treaties and conventions on IPRs, The TRIPs Agreement, PCT Agreement, Th	e
Patent Act of India, Patent Amendment Act (2005), Design Act, Trademark Act, Geographic	
Indication Act, Bayh- Dole Act and Issues of Academic Entrepreneurship.	
UNIT – IV STRATEGIES IN INTELLECTUAL PROPERTY	9
Strategies for investing in R&D, Patent Information and databases, IPR strength in India,	
Traditional Knowledge, Case studies	
UNIT - V MODELS	9
The technologies Know-how, concept of ownership, Significance of IP in Value Creation, IF	>
Valuation and IP Valuation Models, Application of Real Option Model in Strategic Decision	
Making, Transfer and Licensing.	
Total Contact Hours :	45

Course Outcomes:	Upon completion of the course students should be able to:
CO1	Understanding of intellectual property and appreciation of the need to
	protect it
CO2	Understanding of the statutes related to IPRAwareness about the process
CO2	of patenting
CO3	Ability to apply strategies to protect intellectual property
CO4	Ability to apply models for making strategic decisions related to IPR
CO5	Awareness about the process of patenting

HoD/BOS Chairman

Tex	tbooks:
1.	V. Sople Vinod, Managing Intellectual Property by (Prentice hall of India Pvt.Ltd), 2006.
2.	Intellectual Property rights and copyrights, EssEss Publications.
3.	Primer, R. Anita Rao and Bhanoji Rao, Intellectual Property Rights, Lastain Book
	company.

Refe	erence books/other materials/webresources:
1.	Edited by Derek Bosworth and Elizabeth Webster, The Management of Intellectual
	Property, Edward Elgar Publishing Ltd., 2006.
2.	WIPO Intellectual Property Hand book.

PO& PSO / CO		CO-PO Mapping						CO-PSO Mapping			
	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3		
CO1	3	3	2	3	2	3					
CO2	3	3	2	3	1	3					
CO3	3	3	3	3	2	3					
CO4	3	3	3	2	1	3					
CO5	3	3	3	2	2	3					
Average:	3	3	2.6	2.6	1.6	3					

Hod Bos Chairman

Subject Code	Subject Name	Category	L	T	P	C
OBA24004	ETHICAL MANAGEMENT	OEC	3	0	0	3
Course Objectives	S:					

- To introduce the fundamental concepts and theories of ethics as they apply to business and management.
- To help students recognize ethical issues and dilemmas in organizational settings and evaluate them from multiple ethical perspectives.
- To develop students' ability to apply ethical principles in real-world managerial decision-making processes.
- To explore the role of corporate social responsibility (CSR) and ethical leadership in sustainable organizational success.
- To encourage critical thinking and reflective skills necessary for making responsible and value-based decisions in complex business environments.

UNIT – I ETHICS AND SOCIETY

Q

Ethical Management- Definition, Motivation, Advantages-Practical implications of ethical management. Managerial ethics, professional ethics, and social Responsibility-Role of culture and society's expectations- Individual and organizational responsibility to society and the community

UNIT – II ETHICAL DECISION MAKING AND MANAGEMENT IN A CRISIS 9

Managing in an ethical crisis, the nature of a crisis, ethics in crisis management, discuss case studies, analyze real-world scenarios, develop ethical management skills, knowledge, and competencies. Proactive crisis management

UNIT – III STAKEHOLDERS IN ETHICAL MANAGEMENT

9

Stakeholders in ethical management, identifying internal and external stakeholders, nature of stakeholders, ethical management of various kinds of stakeholders: customers (product and service issues), employees (leadership, fairness, justice, diversity) suppliers, collaborators, business, community, the natural environment (the sustainability imperative, green management, Contemporary issues).

UNIT – IV INDIVIDUAL VARIABLES IN ETHICAL MANJAGEMENT

9

Understanding individual variables in ethics, managerial ethics, concepts in ethical psychologyethical awareness, ethical courage, ethical judgment, ethical foundations, ethical emotions/intuitions/intensity. Utilization of these concepts and competencies for ethical decisionmaking and management.

UNIT – V PRACTICAL FIELD-GUIDE, TECHNIQUES AND SKILLS

9

Ethical management in practice, development of techniques and skills, navigating challenges and dilemmas, resolving issues and preventing unethical management proactively. Role modelling and creating a culture of ethical management and human flourishing.

Total Contact Hours: 45

Course Outcomes:	Upon completion of the course students should be able to:
CO1	Role modelling and influencing the ethical and cultural context.
CO2	Respond to ethical crises and proactively address potential crises
CO2	situations.
CO3	: Understand and implement stakeholder management decisions.
CO4	Develop the ability, knowledge, and skills for ethical management
CO5	Develop practical skills to navigate, resolve and thrive in management
	situations

Textbooks:

- 1. Brad Agle, Aaron Miller, Bill O' Rourke, The Business Ethics Field Guide: the essential companion to leading your career and your company, 2016.
- 2. Steiner & Steiner, Business, Government & Society: A managerial Perspective, 2011

Reference books/other materials/webresources:

1. Lawrence & Weber, Business and Society: Stakeholders, Ethics, Public Policy, 2020

PO& PSO / CO		CO-PO Mapping						CO-PSO Mapping			
	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3		
CO1	3	3	2	3	2	3					
CO2	-	3	2	3	1	3					
CO3	3	3	3	3	2	3					
CO4	3	3	3	2	1	3					
CO5	3	3	3	2	2	3					
Average:	2.8	3	2.6	2.6	1.6	3					

HoD/BOS Chairman

Subject Code	Subject Name	Category	Category L		P	C
ET24003	IoT FOR SMART SYSTEMS	OEC	3	3 0 0		3
Course Objecti	ves:					
To study	about Internet of Things technologies and its	role in real time	app	licati	ons.	
To introd	uce the infrastructure required for IoT					
• To famili	arize the accessories and communication tech	niques for IoT.				
To provide	de insight about the embedded processor and	sensors required	for	[oT		
To famili	arize the different platforms and Attributes for	r IoT				

UNIT - I INTRODUCTION TO INTER	
Overview, Hardware and software requirement	nts for IOT, Sensor and actuators, Technology
drivers, Business drivers, Typical IoT application	ons, Trends and implications.
UNIT – II IOT ARCHITECTURE	9
IoT reference model and architecture -Node St	ructure - Sensing, Processing, Communication,
Powering, Networking - Topologies, Layer	er/Stack architecture, IoT standards, Cloud
computing for IoT, Bluetooth, Bluetooth Low I	Energy beacons.
UNIT - III PROTOCOLS AND WIRELE	SS TECHNOLOGIES FOR IOT 9
PROTOCOLS: NFC, SCADA and RFID, Zigb	ee MIPI, M-PHY, UniPro, SPMI, SPI, M-PCIe
GSM, CDMA, LTE, GPRS, small cell. Wirel	ess technologies for IoT: WiFi (IEEE 802.11),
Bluetooth/Bluetooth Smart, ZigBee/ZigBee	Smart, UWB (IEEE 802.15.4), 6LoWPAN,
Proprietary systems-Recent trends.	
UNIT – IV IOT PROCESSORS	9
Services/Attributes: Big-Data Analytics for	IOT, Dependability, Interoperability, Security,
Maintainability. Embedded processors for IOT	:Introduction to Python programming -Building
IOT with RASPERRY PI and Arduino.	
UNIT – V CASE STUDIES	9
Industrial IoT, Home Automation, smart cit	ies, Smart Grid, connected vehicles, electric
vehicle charging, Environment, Agriculture, Pr	
	Total Contact Hours : 45

Course Outcomes:	Upon completion of the course students should be able to:
CO1	Analyze the concepts of IoT and its present developments.
CO2	Compare and contrast different platforms and infrastructures available for IoT
CO3	Explain different protocols and communication technologies used in IoT
CO4	Analyze the big data analytic and programming of IoT
C05	Implement IoT solutions for smart applications

HoD/BOS/Chairman

Text	tbooks:
1.	ArshdeepBahga and VijaiMadisetti : A Hands-on Approach "Internet of
	Things", Universities Press 2015.
2.	Oliver Hersent, David Boswarthick and Omar Elloumi "The Internet of Things",
	Wiley,2016
3.	Samuel Greengard, "The Internet of Things", The MIT press, 2015

Ref	Reference books/other materials/webresources:						
1.	Adrian McEwen and Hakim Cassimally"Designing the Internet of Things "Wiley,2014.						
2.	Jean- Philippe Vasseur, Adam Dunkels, "Interconnecting Smart Objects with IP: The						
	Next Internet" Morgan Kuffmann Publishers, 2010						
3.	Adrian McEwen and Hakim Cassimally, "Designing the Internet of Things", John Wiley						
	and sons, 2014.						

		CO-PO Mapping				CO-PSO Mapping			
PO& PSO / CO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3
CO1	1	2	1						
CO2		2							
CO3	1	2		1	3				
CO4	2		3	3	3	3			
CO5	3	2	3	3	3	3			
Average:	1.4	1.6	1.4	1.4	1.8	1.2			

HoD/BOS Chairman

Subject Code	Subject Name	Category	y L T		P	C
ET24002	MACHINE LEARNING AND DEEP LEARNING	OEC	3	3 0 0		3
Course Objectiv	ves:					
 Understa 	nding about the learning problem and algorithm	S				
Providing	g insight about neural networks					
• Introduci	ng the machine learning fundamentals and signi	ficance				
Enabling	the students to acquire knowledge about pattern	recognition.				
	ng the students to apply deep learning algorithm			ife p	roble	ems

UNIT - I LEARNING PROBLEMS AND ALGORITHMS	9
Various paradigms of learning problems, Supervised, Semi-supervised and Unsuper	vised
algorithms	
UNIT – II NEURAL NETWORKS	9
Differences between Biological and Artificial Neural Networks - Typical Archite	cture,
Common Activation Functions, Multi-layer neural network, Linear Separability, Hebb	Net,
Perceptron, Adaline, Standard Back propagation Training Algorithms for Pattern Associa	tion -
Hebb rule and Delta rule, Hetero associative, Auto associative, Kohonen Self Organ	
Maps, Examples of Feature Maps, Learning Vector Quantization, Gradient descent, Boltz	mann
Machine Learning	
UNIT – III MACHINE LEARNING – FUNDAMENTALS & FEATURE	9
SELECTIONS & CLASSIFICATIONS	
Classifying Samples: The confusion matrix, Accuracy, Precision, Recall, F1- Score, the	curse
of dimensionality, training, testing, validation, cross validation, overfitting, under-fitting	_
data, early stopping, regularization, bias and variance. Feature Selection, normaliz	
dimensionality reduction, Classifiers: KNN, SVM, Decision trees, Naïve Bayes, E	inary
classification, multi class classification, clustering.	
UNIT – IV DEEP LEARNING: CONVOLUTIONAL NEURAL NETWORKS	9
Feed forward networks, Activation functions, back propagation in CNN, optimizers,	
normalization, convolution layers, pooling layers, fully connected layers, dropout, Example 1.	mples
of CNNs	
UNIT - V DEEP LEARNING: RNNS, AUTOENCODERS AND GANS	9
State, Structure of RNN Cell, LSTM and GRU, Time distributed layers, Generating	Text,
Autoencoders: Convolutional Autoencoders, Denoising autoencoders, Varia	tional
autoencoders, GANs: The discriminator, generator, DCGANs	
Total Contact Hour	s: 45

Course Outcomes:	Jpon completion of the course students should be able to:				
CO1	lustrate the categorization of machine learning algorithms.				
CO2	Compare and contrast the types of neural network architectures, activation functions				
CO3	Acquaint with the pattern association using neural networks				
CO4	Elaborate various terminologies related with pattern recognition and architectures of convolutional neural networks				
CO5	Construct different feature selection and classification techniques and				

advanced neural network architectures such as RNN, Auto encoders, and GANs.

J. S. R. Jang, C. T. Sun, E. Mizutani, Neuro Fuzzy and Soft Computing - A Computational Approach to Learning and Machine Intelligence, 2012, PHI learni Deep Learning, Ian Good fellow, YoshuaBengio and Aaron Courville, MIT Press, ISBN: 978026 The Elements of Statistical Learning. Trevor Hastie, Robert Tibshirani and Jerome Friedman. Second Edition. 2009

Reference books/other materials/webresources:

- 1. Pattern Recognition and Machine Learning. Christopher Bishop. Springer. 2006.
- 2. Understanding Machine Learning. Shai Shalev-Shwartz and Shai Ben-David. Cambridge University.

			CO-PO	CO-PSO Mapping					
PO& PSO / CO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3
CO1	1	3	1						
CO2	2	3	2						
CO3	3		3		3				
CO4	2	3	3	77					
CO5	3	3	3		3				
Average:	2.2	2.4	2.4		1.2				

Subject Code	Subject Name	Category	L	T	P	C
PX24010	RENEWABLE ENERGY TECHNOLOGY	OEC	3	0	0	3
Course Objecti	ves:					
Different	types of renewable energy technologies					
Standalo	ne operation, grid connected operation of renewa	ble energy sy	sten	15		

TINITE T	INTEROPLICATION		
	INTRODUCTION) 11 D	9
	of energy sources - Co2 Emission - Features of I		
	rio in India -Environmental aspects of electric		
	ergy generation on environment Per Capital Co	-	n -
	frenewable energy sources, Potentials - Achievem	ents-Applications	
UNIT – II	SOLAR PHOTOVOLTAICS		9
	Sun and Earth-Basic Characteristics of solar radia		
	mating Solar Radiation Empirically - Equivalent o		
cell character	ristics: P-V and I-V curve of cell-Impact of Tem	perature and Insolation on	I-V
characteristic	s-Shading Impacts on I-V characteristics-Bypass d	iode -Blocking diode.	
UNIT – III	PHOTOVOLTAIC SYSTEM DESIGN		9
Block diagram	n of solar photo voltaic system : Line commutated	d converters (inversion mod	le) -
Boost and b	uck-boost converters - selection of inverter, bat	tery sizing, array sizing -	PV
systems class	ification- standalone PV systems - Grid tied and	grid interactive inverters-	grid
connection is	sue		171
UNIT – IV	WIND ENERGY CONVERSION SYSTEMS		9
Origin of W	inds: Global and Local Winds- Aerodynamics	of Wind turbine-Derivation	ı of
Betz's limit	Power available in wind-Classification of wind	turbine: Horizontal Axis w	vind
turbine and	Vertical axis wind turbine- Aerodynamic Efficiency	cy-Tip Speed-Tip Speed Ra	ıtio-
Solidity-Blad	e Count-Power curve of wind turbine - Configurat	ions of wind energy convers	sion
systems: Typ	e A, Type B, Type C and Type D Configurations-	Grid connection Issues - (Grid
	IG and PMSG based WECS		
	OTHER RENEWABLE ENERGY SOURCES		9
Qualitative s	udy of different renewable energy resources: oce	an, Biomass, Hydrogen ene	ergy
systems, Fue	l cells, Ocean Thermal Energy Conversion (O)	TEC), Tidal and wave ene	rgy,
	Energy Resources.	•	
	×.	Total Contact Hours	: 45

Course Outcomes:	Upon completion of the course students should be able to:
CO1	Demonstrate the need for renewable energy sources.
602	Develop a stand-alone photo voltaic system and implement a maximum
CO2	power point tracking in the PV system.
CO3	Design a stand-alone and Grid connected PV system.
CO4	Analyze the different configurations of the wind energy conversion
CO4	systems.
CO5	Realize the basic of various available renewable energy sources

Hob BOS Chairman

Text	books:
1.	S.N.Bhadra, D. Kastha, & S. Banerjee "Wind Electrical Systems", Oxford
	UniversityPress, 2009.
2.	Rai. G.D, "Non conventional energy sources", Khanna publishes, 1993
3.	. Rai. G.D," Solar energy utilization", Khanna publishes, 1993.

Ref	erence books/other materials/webresources:
1.	Chetan Singh Solanki, "Solar Photovoltaics: Fundamentals, Technologies and
	Applications", PHI Learning Private Limited, 2012.
2.	John Twideu and Tony Weir, "Renewal Energy Resources" BSP Publications, 2006
3.	Gray, L. Johnson, "Wind energy system", prentice hall of India, 1995

PO& PSO / CO			CO-PO	CO-PSO Mapping					
	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3
CO1	3		2	2	2	1			
CO2	3		2	3	3	3			
CO3	3		2	3	3	3			
CO4	3		2	3	3	2			
CO5	3		2	2	2	2			
Average:	3		2	2.8	2.6	2.2			

HoD/BOS Chairman

Subject Code	Subject Name	Category	L	T	P	C
PS24003	SMART GRID	OEC	3	0	0	3
Course Objectiv	ves:					
To Study	about Smart Grid technologies, different	smart meters and ad	lvano	ed n	neter	ing
infrastruc	eture					
 To know 	about the function of smart grid.					
To famili	arize the power quality management issue	s in Smart Grid				
To famili	arize the high performance computing for	Smart Grid applica	tions	S		
To get fa	miliarized with the communication network	rks for Smart Grid a	pplie	catio	ns	

INTRODUCTION TO SMART GRID Evolution of Electric Grid, Concept, Definitions and Need for Smart Grid, Smart grid drivers, functions, opportunities, challenges and benefits, Difference between conventional & Smart Grid, Comparison of Micro grid and Smart grid, Present development & International policies in Smart Grid, Smart Grid Initiative for Power Distribution Utility in India - Case Study. **SMART GRID TECHNOLOGIES** Technology Drivers, Smart Integration of energy resources, Smart substations, Substation Automation, Feeder Automation, Transmission systems: EMS, FACTS and HVDC, Wide area monitoring, Protection and control, Distribution systems: DMS, Volt/Var control, Fault Detection, Isolation and service restoration, Outage management, High-Efficiency Distribution Transformers, Phase Shifting Transformers, Plug in Hybrid Electric Vehicles (PHEV) - Grid to Vehicle and Vehicle to Grid charging concepts UNIT – III SMART METERS AND ADVANCED METERING **INFRASTRUCTURE** Introduction to Smart Meters, Advanced Metering infrastructure (AMI) drivers and benefits, AMI protocols, standards and initiatives, AMI needs in the smart grid, Phasor Measurement Unit(PMU) & their application for monitoring & protection. Demand side management and demand response programs, Demand pricing and Time of Use, Real Time Pricing, Peak Time Pricing UNIT - IV POWER QUALITY MANAGEMENT IN SMART GRID Power Quality & EMC in Smart Grid, Power Quality issues of Grid connected Renewable Energy Sources, Power Quality Conditioners for Smart Grid, Web based Power Quality monitoring, Power Quality Audit. HIGH PERFORMANCE COMPUTING FOR SMART GRID UNIT - V

Course Outcomes:	Upon completion of the course students should be able to:
CO1	Relate with the smart resources, smart meters and other smart devices.
CO2	Explain the function of Smart Grid
CO3	Experiment the issues of Power Quality in Smart Grid.
CO4	Analyze the performance of Smart Grid.
CO5	Recommend suitable communication networks for smart grid applications

Architecture and Standards -Local Area Network (LAN), House Area Network (HAN), Wide Area Network (WAN), Broadband over Power line (BPL), PLC, Zigbee, GSM, IP based Protocols, Basics of Web Service and CLOUD Computing, Cyber Security for Smart Grid.

APPLICATIONS

Total Contact Hours: 45

Tex	41	- T	
AV	TINA	ALC C	٠
IVA	uvv	CLLO	

- 1. Stuart Borlase 'Smart Grid: Infrastructure, Technology and Solutions', CRC Press 2012
- 2. JanakaEkanayake, Nick Jenkins, KithsiriLiyanage, Jianzhong Wu, Akihiko Yokoyama, 'Smart Grid: Technology and Applications', Wiley, 2012.
- 3. Mini S. Thomas, John D McDonald, 'Power System SCADA and Smart Grids', CRC Press, 2015

Reference books/other materials/webresources:

- 1. Kenneth C.Budka, Jayant G. Deshpande, Marina Thottan, 'Communication Networks for Smart Grids', Springer, 2014
- 2. SMART GRID Fundamentals of Design and Analysis, James Momoh, IEEE press, A John Wiley & Sons, Inc., Publication.

PO& PSO / CO			CO-PO	CO-PSO Mapping					
	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3
CO1	3	2		2	2	2			
CO2	3		2	2		2			
CO3	2		1						
CO4	1			3	3	1			
CO5		2	2	2	2	3			
Average:	1.8	8,0	1	1.8	1.4	1.6			-2

Subject Code	Subject Name	Category	L	T	P	C
CP24007	SECURITY PRACTICES	OEC	3	0	0	3
Course Objective	Course Objectives:					
• To gain a l	pasic knowledge of system security					
To gain a l	pasic knowledge of network security					
To know t	he fund medal knowledge about security m	anagement				
To obtain	knowledge about cyber security and cloud	security				
To gain ba	sic knowledge about privacy and storage se	ecurity				

UNIT – I SYSTEM SECURITY	9
Model of network security - Security attacks, services and mechanisms - OSI secu	rity
architecture -A Cryptography primer- Intrusion detection system- Intrusion Prevention sys	tem
- Security web applications- Case study: OWASP - Top 10 Web Application Security Risks	
UNIT – II NETWORK SECURITY	9
Internet Security - Intranet security- Local Area Network Security - Wireless Network Secu	rity
- Wireless Sensor Network Security- Cellular Network Security - Mobile security -	TO
security - Case Study - Kali Linux	
UNIT – III SECURITY MANAGEMENT	9
Information security essentials for IT Managers- Security Management System - Policy Dri	ven
System Management- IT Security - Online Identity and User Management System. Case stu	ıdy:
Metasplo	
UNIT – IV CYBER SECURITY AND CLOUD SECURITY	9
Cyber Forensics - Disk Forensics - Network Forensics - Wireless Forensics - Database	oase
Forensics - Malware Forensics - Mobile Forensics - Email Forensics- Best security pract	ices
for automate Cloud infrastructure management - Establishing trust in IaaS, PaaS, and S	aaS
Cloud types. Case study: DVWA	
UNIT - V PRIVACY AND STORAGE SECURITY	9
Privacy on the Internet - Privacy Enhancing Technologies - Personal privacy Policies	es -
Detection of Conflicts in security policies- privacy and security in environment monitor	ring
systems. Storage Area Network Security - Storage Area Network Security Devices - F	₹isk
management - Physical Security Essentials	
Total Contact Hours	: 45

Course Outcomes:	Upon completion of the course students should be able to:
CO1	Understand the core fundamentals of system security
CO2	Apply the security concepts to wired and wireless networks
CO3	Implement and Manage the security essentials in IT Sector
CO4	Explain the concepts of Cyber Security and Cyber forensics
CO5	Be aware of Privacy and Storage security Issues.

Textbooks:

- 1. John R. Vacca, Computer and Information Security Handbook, Third Edition, Elsevier 2017
- 2. Michael E. Whitman, Herbert J. Mattord, Principles of Information Security, Seventh Edition, Cengage Learning, 2022
- 3. Richard E. Smith, Elementary Information Security, Third Edition, Jones and Bartlett Learning, 2019

Reference books/other materials/webresources:

- 1. Mayor, K.K.Mookhey, Jacopo Cervini, Fairuzan Roslan, Kevin Beaver, Metasploit Toolkit for Penetration Testing, Exploit Development and Vulnerability Research, Syngress publications, Elsevier, 2007. ISBN: 978-1-59749-074-0
- 2. John Sammons, "The Basics of Digital Forensics- The Primer for Getting Started in Digital Forensics", Syngress, 2012
- 3. Cory Altheide and Harlan Carvey, "Digital Forensics with Open Source Tools",2011 Syngress, ISBN: 9781597495875

PO& PSO / CO			CO-PO	CO-PSO Mapping					
	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3
CO1	1	2	1	1	2	1	-	-	-
CO2	2	1	3	1	1	2	-	-	-
CO3	-	-	2	3	3	3	-	-	-
CO4	- 2	2	1	2	1	3	-	50 -	-
CO5	1	-	1	1	2	3	-	-	-
Average:	1.2	1	1.6	1.6	1.8	2.4	-	-	-

HoD/BOS Chairman

Subject Code	Subject Name	Category	L	Т	P	C
MP24002	CLOUD COMPUTING	OEC	3	0	0	3
1411 24002	TECHNOLOGIES	OEC	5			5

Course Objectives:

- To gain expertise in Virtualization, Virtual Machines and deploy practical virtualization solution
- To understand the architecture, infrastructure and delivery models of cloud computing
- To explore the roster of AWS services and illustrate the way to make applications in AWS
- To gain knowledge in the working of Windows Azure and Storage services offered by Windows Azure
- To develop the cloud application using various programming model of Hadoop and Aneka

UNIT – I VIRTUALIZATION AND VIRTUALIZATION INFRASTRUCTURE 9

Basics of Virtual Machines - Process Virtual Machines - System Virtual Machines - Emulation - Interpretation - Binary Translation - Taxonomy of Virtual Machines. Virtualization - Management Virtualization - Hardware Maximization - Architectures - Virtualization Management - Storage Virtualization - Network Virtualization- Implementation levels of virtualization - virtualization structure - virtualization of CPU, Memory and I/O devices - virtual clusters and Resource Management - Virtualization for data center automation

UNIT – II CLOUD PLATFORM ARCHITECTURE

9

Cloud Computing: Definition, Characteristics - Cloud deployment models: public, private, hybrid, community - Categories of cloud computing: Everything as a service: Infrastructure, platform, software- A Generic Cloud Architecture Design - Layered cloud Architectural Development - Architectural Design Challenges

UNIT – III | AWS CLOUD PLATFORM - IAAS

9

Amazon Web Services: AWS Infrastructure- AWS API- AWS Management Console - Setting up AWS Storage - Stretching out with Elastic Compute Cloud - Elastic Container Service for Kubernetes- AWS Developer Tools: AWS Code Commit, AWS Code Build, AWS Code Deploy, AWS Code Pipeline, AWS code Star - AWS Management Tools: Cloud Watch, AWS Auto Scaling, AWS control Tower, Cloud Formation, Cloud Trail, AWS License Manage

UNIT – IV PAAS CLOUD PLATFORM

9

Windows Azure: Origin of Windows Azure, Features, The Fabric Controller – First Cloud APP in Windows Azure- Service Model and Managing Services: Definition and Configuration, Service runtime API- Windows Azure Developer Portal- Service Management API- Windows Azure Storage Characteristics-Storage Services- REST API- Blops

UNIT – V PROGRAMMING MODEL

9

Introduction to Hadoop Framework - Mapreduce, Input splitting, map and reduce functions, specifying input and output parameters, configuring and running a job —Developing Map Reduce Applications - Design of Hadoop file system —Setting up Hadoop Cluster- Aneka: Cloud Application Platform, Thread Programming, Task Programming and Map-Reduce Programming in Aneka

Total Contact Hours: 45

AGruhur HoD/BOS Chairman

Course Outcomes:	Upon completion of the course students should be able to:
CO1	Employ the concepts of virtualization in the cloud computing
CO2	Identify the architecture, infrastructure and delivery models of cloud
COZ	computing
CO3	Develop the Cloud Application in AWS platform
CO4	Apply the concepts of Windows Azure to design Cloud Application
CO5	Develop services using various Cloud computing programming models.

Tex	tbooks:
1.	Bernard Golden, Amazon Web Service for Dummies, John Wiley & Sons, 2013
2.	Raoul Alongi, AWS: The Most Complete Guide to Amazon Web Service from Beginner
	to Advanced Level, Amazon Asia- Pacific Holdings Private Limited, 2019.
3.	Sriram Krishnan, Programming: Windows Azure, O'Reilly,2010

Ref	Reference books/other materials/webresources:							
1.	Rajkumar Buyya, Christian Vacchiola, S.Thamarai Selvi, Mastering Cloud Computing,							
	MCGraw Hill Education (India) Pvt. Ltd., 2013							
2.	Danielle Ruest, Nelson Ruest, —Virtualization: A Beginner's Guidel, McGraw-Hill							
	Osborne Media, 2009							
3.	Jim Smith, Ravi Nair, "Virtual Machines: Versatile Platforms for Systems and							
,	Processes", Elsevier/Morgan Kaufmann, 2005.							

	CO-PO Mapping												CO-PSO Mapping		
PO& PSO / CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3	
CO1	3	2	-	2	3	2	-	-	-	-	-	-	-	-	
CO2	3	-	2	2	-]	2	-	-	-	-	-	-	-	-	
CO3	2	-	1	-	-	-	-	-	-	-	-	-	-	-	
CO4	2	-	-	2	3	1	-	-	-	-	-	_	-	-	
CO5	-	2	2	2	3	3	-	-	-	-		-	-	-	
Average:	2	0.8	1	1.6	1.8	1.6	-	-	_	-	-	-		-	

Rrincipal

Subject Code	Subject Name	Category	L	T	P	C
IF24001	DESIGN THINKING	OEC	3	0	0	3
Course Objectiv	ves:	Ti	-			
To provide	de a sound knowledge in UI & UX					
To under	stand the need for UI and UX					
• Research	Methods used in Design					
Tools use	ed in UI & UX					
Creating	a wireframe and prototype					

UNIT – I UX LIFECYCLE TEMPLATE

9

Introduction. A UX process lifecycle template. Choosing a process instance for your project. The system complexity space. Meet the user interface team. Scope of UX presence within the team. More about UX lifecycles. Business Strategy. Value Innovation. Validated User Research. Killer UX Design. The Blockbuster Value Proposition. What Is a Value Proposition?

UNIT – II CONTEXTUAL INQUIRY

9

The system concept statement. User work activity data gathering. Look for emotional aspects of work practice. Abridged contextual inquiry process. Data-driven vs. model-driven inquiry. Organizing concepts: work roles and flow model. Creating and managing work activity notes. Constructing your work activity affinity diagram (WAAD). Abridged contextual analysis process. History of affinity diagrams

UNIT - III DESIGN THINKING, IDEATION, AND SKETCHING

9

Design-informing models: second span of the bridge. Some general "how to" suggestions. A New example domain: slideshow presentations. User models. Usage models. Work environment models. Barrier summaries. Model consolidation. Protecting your sources. Abridged methods for design-informing models extraction. Design paradigms. Design thinking. Design perspectives. User personas. Ideation. Sketching

UNIT – IV UX GOALS, METRICS, AND TARGETS

9

Introduction. UX goals. UX target tables. Work roles, user classes, and UX goals. UX measures. Measuring instruments. UX metrics. Baseline level. Target level. Setting levels. Observed results. Practical tips and cautions for creating UX targets. How UX targets help manage the user experience engineering proces

UNIT – V ANALYSING USER EXPERIENCE

9

Sharpening Your Thinking Tools. UX Research and Strength of Evidence. Agile Personas. How to Prioritize Usability Problems. Creating Insights, Hypotheses and Testable Design Ideas. How to Manage Design Projects with User Experience Metrics. Two Measures that Will Justify Any Design Change. Evangelizing UX Research. How to Create a User Journey Map. Generating Solutions to Usability Problems. Building UX Research Into the Design Studio Methodology. Dealing with Common objections to UX Research. The User Experience Debrief Meeting. Creating a User Experience Dashboard

Total Contact Hours: 45

Course Outcomes:	Upon completion of the course students should be able to:
CO1	Hands on Design Thinking process for a product
CO2	Defining the Look and Feel of any new Project
CO3	Create a Sample Pattern Library for that product (Mood board, Fonts, Colors based on UI principles
CO4	Identify a customer problem to solve.
CO5	Conduct end-to-end user research - User research, creating personas,

Hod/BOS/Chairman

C- Principal

Ideation	process	(User	stories,	Scenarios),	Flow	diagrams,	Flow
Mapping							

Tex	tbooks:
1.	.Build UI for user Applications
2.	Use the UI Interaction behaviors and principles
3.	Evaluate UX design of any product or application

Reference books/other materials/web resources:						
1.	Demonstrate UX Skills in product development					
2.	Implement Sketching principles					

			СО-РО	CO-PSO Mapping					
PO& PSO / CO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3
CO1	3	2		2	2	2			
CO2	3	2	2	2		2			
CO3	2		2						
CO4	3			3	3	1			
CO5		2	2	2	2	, 3			
Average:	2.2	1.2	1.2	1.8	1.4	1.4			

HoD BOS Chairman

Subject Code	Subject Name	Category	L	T	P 0	C
MU24001	PRINCIPLES OF MULTIMEDIA	OEC	3	0		3
Course Objectiv	ves:					
To get far	miliarity with gamut of multimedia and its sign	nificance				
To acquir	re knowledge in multimedia components					
To acquir	e knowledge about multimedia tools and author	oring				
To acquir	e knowledge in the development of multimedi	a applications.				
	re the latest trends and technologies in multime					

UNIT – I INTRODUCTION

9

Introduction to Multimedia – Characteristics of Multimedia Presentation – Multimedia Components – Promotion of Multimedia Based Components – Digital Representation – Media and Data Streams – Multimedia Architecture – Multimedia Documents, Multimedia Tasks and Concerns, Production, sharing and distribution, Hypermedia, WWW and Internet, Authoring, Multimedia over wireless and mobile networks.

Suggested Activities: 1. Flipped classroom on media Components. 2. External learning – Interactive presentation. Suggested Evaluation Methods: 1. Tutorial – Handling media components 2. Quizzes on different types of data presentation.

UNIT – II ELEMENTS OF MULTIMEDIA

9

Text-Types, Font, Unicode Standard, File Formats, Graphics and Image data representations – data types, file formats, color models; video – color models in video, analog video, digital video, file formats, video display interfaces, 3D video and TV: Audio – Digitization, SNR, SQNR, quantization, audio quality, file formats, MIDI; Animation-Key Frames and Tweening, other Techniques, 2D and 3D Animation.

Suggested Activities: 1. Flipped classroom on different file formats of various media elements. 2. External learning – Adobe after effects, Adobe Media Encoder, Adobe Audition. Suggested Evaluation Methods: MU24001 PRINCIPLES OF MULTIMEDIA L T P C 1. Demonstration on after effects animations. 2. Quizzes on file formats and color models.

UNIT - III | MULTIMEDIA TOOLS

9

Authoring Tools – Features and Types – Card and Page Based Tools – Icon and Object Based Tools – Time Based Tools – Cross Platform Authoring Tools – Editing Tools – Painting and Drawing Tools – 3D Modeling and Animation Tools – Image Editing Tools – Sound Editing Tools – Digital Movie Tools.

Suggested Activities: 1. Flipped classroom on multimedia tools. 2. External learning – Comparison of various authoring tools. Suggested Evaluation Methods: 1. Tutorial – Audio editing tool. 2. Quizzes on animation tools

UNIT – IV | MULTIMEDIA SYSTEMS

9

Compression Types and Techniques: CODEC, Text Compression: GIF Coding Standards, JPEG standard – JPEG 2000, basic audio compression – ADPCM, MPEG Psychoacoustics, basic Video compression techniques – MPEG, H.26X – Multimedia Database System – User Interfaces – OS Multimedia Support – Hardware Support – Real Time Protocols – Play Back Architectures – Synchronization – Document Architecture – Hypermedia Concepts: Hypermedia Design – Digital Copyrights, Content analysis.

Suggested Activities: 1. Flipped classroom on concepts of multimedia hardware architectures. 2. External learning – Digital repositories and hypermedia design. Suggested Evaluation Methods: 1. Quizzes on multimedia hardware and compression techniques. 2. Tutorial – Hypermedia design.

HoD/BOS Chairman

UNIT – V MULTIMEDIA APPLICATIONS FOR THE WEB AND MOBILE PLATFORMS

ADDIE Model – Conceptualization – Content Collection – Storyboard–Script Authoring Metaphors – Testing – Report Writing – Documentation. Multimedia for the web and mobile platforms. Virtual Reality, Internet multimedia content distribution, Multimedia Information sharing – social media sharing, cloud computing for multimedia services, interactive cloud gaming. Multimedia information retrieval.

Suggested Activities: 1. External learning – Game consoles. 2. External learning – VRML scripting languages. Suggested Evaluation Methods: 1. Demonstration of simple interactive games. 2. Tutorial – Simple VRML program.

Total Contact Hours: 45

Course Outcomes:	Upon completion of the course students should be able to:
CO1	Handle the multimedia elements effectively.
CO2	Articulate the concepts and techniques used in multimedia applications.
CO3	Develop effective strategies to deliver Quality of Experience in multimedia applications.
CO4	Design and implement algorithms and techniques applied to multimedia objects
CO5	Design and develop multimedia applications following software engineering models.

Li, Ze-Nian, Drew, Mark, Liu, Jiangchuan, "Fundamentals of Multimedia", Springer, Third Edition, 2021 Prabhat K.Andleigh, Kiran Thakrar, "MULTIMEDIA SYSTEMS DESIGN", Pearson Education, 2015

Ref	erence books/other materials/webresources:
1.	Gerald Friedland, Ramesh Jain, "Multimedia Computing", Cambridge University Press,
	2018. (digital book)
2.	Ranjan Parekh, "Principles of Multimedia", Second Edition, McGraw-Hill Education,
	2017

	CO-PO Mapping						CO-PSO Mapping			
PO& PSO / CO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3	
CO1	3	2	-	2	2	2	-	- 1	-	
CO2	3	-	2	2	-	2	-	-	-	
CO3	3	2	1	-	-	-	-	-		
CO4	3	-	-	3	3	1	-	-	-	
CO5	-	2	2	3	2	3	-	-	-	
Average:	2.4	1.2	1	2	1.4	1.6	-	-	-	

Hob BOS Chairman

Subject Code	Subject Name	Category	L	Т	P	C
DS24001	BIG DATA ANALYTICS	OEC	3	0	0	3
Course Objectiv	ves:					
To unders	stand the basics of big data analytics					
To under	stand the search methods and visualization					
To learn i	mining data streams					
To learn:	frameworks					
To gain k	nowledge on R language					11

UNIT - I INTRODUCTION TO BIG DATA

9

Introduction to Big Data Platform — Challenges of Conventional Systems - Intelligent data analysis —Nature of Data - Analytic Processes and Tools - Analysis Vs Reporting - Modern Data Analytic Tools- Statistical Concepts: Sampling Distributions - Re-Sampling - Statistical Inference - Prediction Error.

UNIT – II SEARCH METHODS AND VISUALIZATION

9

Search by simulated Annealing – Stochastic, Adaptive search by Evaluation – Evaluation Strategies –Genetic Algorithm – Genetic Programming – Visualization – Classification of Visual Data Analysis Techniques – Data Types – Visualization Techniques – Interaction techniques – Specific Visual data analysis Techniques.

UNIT – III | MINING DATA STREAMS

9

Introduction To Streams Concepts – Stream Data Model and Architecture - Stream Computing - Sampling Data in a Stream – Filtering Streams – Counting Distinct Elements in a Stream – Estimating Moments – Counting Oneness in a Window – Decaying Window - Real time Analytics Platform(RTAP) Applications - Case Studies - Real Time Sentiment Analysis, Stock Market Predictions.

UNIT - IV FRAMEWORKS

9

MapReduce – Hadoop, Hive, MapR – Sharding – NoSQL Databases - S3 - Hadoop Distributed File Systems – Case Study- Preventing Private Information Inference Attacks on Social Networks- Grand Challenge: Applying Regulatory Science and Big Data to Improve Medical Device Innovation.

UNIT - V R LANGUAGE

9

Overview, Programming structures: Control statements -Operators -Functions -Environment and scope issues -Recursion -Replacement functions, R data structures: Vectors -Matrices and arrays -Lists -Data frames -Classes, Input/output, String manipulations.

Total Contact Hours: 45

Course Outcomes:	Upon completion of the course students should be able to:								
CO1	understand the basics of big data analytics								
CO2	Ability to use Hadoop, Map Reduce Framework.								
CO3	Ability to identify the areas for applying big data analytics for increasing the business outcome.								
CO4	To gain knowledge on R language								
CO5	Contextually integrate and correlate large amounts of information to								

Textbooks:

- 1. Michael Berthold, David J. Hand, Intelligent Data Analysis, Springer, 2007.
- 2. Bill Franks, Taming the Big Data Tidal Wave: Finding Opportunities in Huge Data Streams with Advanced Analytics, John Wiley & sons, 2012.

Reference books/other materials/webresources:

- 1. Anand Rajaraman and Jeffrey David Ullman, Mining of Massive Datasets, Cambridge University Press, 3rd edition 2020.
- 2. Norman Matloff, The Art of R Programming: A Tour of Statistical Software Design, No Starch Press, USA, 2011.

	CO-PO Mapping						CO-PSO Mapping			
PO& PSO / CO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3	
COI	3	3	3	3	2	1	3			
CO2	3	3	3	3	2	1	2	2		
CO3	3	3	3	3	2	1	2	2		
CO4	3	3	3	3	2	1	3	3	1	
CO5	3	3	3	3	2	1	3	2	2	
Average:	3	3	3	. 3	2	1	2.6	1.8	0.6	

HoD/BOS Chairman

Subject Code	Subject Name	Category	L	T	P	C
NC24001	INTERNET OF THINGS AND CLOUD	OEC	3	0	0	3
Course Objectiv	/es:		/1			
Objective	: 1:To understand Smart Objects and IoT Archit	ectures				
Objective	2:To learn about various IOT-related protocols	3				
Objective	e 3:To build simple IoT Systems using Arduino	and Raspberr	y Pi.			
	4:To understand data analytics and cloud in the					
	5:To develop IoT infrastructure for popular ap					

Infrastructure protocol (IPV4/V6/RPL), Identification (URIs), Transport (Wifi, Lifi, BLE Discovery, Data Protocols, Device Management Protocols. – A Case Study with MQTT/CoA usage-IoT privacy, security and vulnerability solutions.	are nd 9 E),
Platforms – Arduino, Raspberry Pi, Node MCU. A Case study with any one of the boards at data acquisition from sensors. UNIT – II PROTOCOLS FOR IoT Infrastructure protocol (IPV4/V6/RPL), Identification (URIs), Transport (Wifi, Lifi, BLE Discovery, Data Protocols, Device Management Protocols. – A Case Study with MQTT/CoA usage-IoT privacy, security and vulnerability solutions.	nd 9 E),
data acquisition from sensors. UNIT - II PROTOCOLS FOR IoT Infrastructure protocol (IPV4/V6/RPL), Identification (URIs), Transport (Wifi, Lifi, BLE Discovery, Data Protocols, Device Management Protocols. – A Case Study with MQTT/CoA usage-IoT privacy, security and vulnerability solutions.	9 E),
UNIT – II PROTOCOLS FOR IoT Infrastructure protocol (IPV4/V6/RPL), Identification (URIs), Transport (Wifi, Lifi, BLE Discovery, Data Protocols, Device Management Protocols. – A Case Study with MQTT/CoA usage-IoT privacy, security and vulnerability solutions.	É),
Infrastructure protocol (IPV4/V6/RPL), Identification (URIs), Transport (Wifi, Lifi, BLE Discovery, Data Protocols, Device Management Protocols. – A Case Study with MQTT/CoA usage-IoT privacy, security and vulnerability solutions.	É),
Discovery, Data Protocols, Device Management Protocols. – A Case Study with MQTT/CoA usage-IoT privacy, security and vulnerability solutions.	
usage-IoT privacy, security and vulnerability solutions.	'b
UNIT III CACE CTUDIEC/INDUCTORAL ADDITICATIONS	
UNIT – III CASE STUDIES/INDUSTRIAL APPLICATIONS	9
Case studies with architectural analysis: IoT applications – Smart City – Smart Water – Smart	art
Agriculture - Smart Energy - Smart Healthcare - Smart Transportation - Smart Retail - Smart	art
waste management.	
UNIT – IV CLOUD COMPUTING INTRODUCTION	9
Introduction to Cloud Computing - Service Model - Deployment Model- Virtualization	on
Concepts – Cloud Platforms – Amazon AWS – Microsoft Azure – Google APIs.	
UNIT - V IoT AND CLOUD	9
IoT and the Cloud - Role of Cloud Computing in IoT - AWS Components - S3 - Lambda	ı –
AWS IoT Core -Connecting a web application to AWS IoT using MQTT- AWS IoT Example	es.
Security Concerns, Risk Issues, and Legal Aspects of Cloud Computing- Cloud Data Security	
Total Contact Hours : 4	

Course Outcomes:	Upon completion of the course students should be able to:					
CO1	Understand the various concept of the IoT and their technologies.					
CO2	Develop IoT application using different hardware platforms.					
CO3	Implement the various IoT Protocols.					
CO4	Understand the basic principles of cloud computing.					
CO5	Develop and deploy the IoT application into cloud environment.					

Textbooks:							
1.	"The Internet of Things: Enabling Technologies, Platforms, and Use Cases", by Pethuru						
	Raj and Anupama C. Raman ,CRC Press, 2017.						
2.	Adrian McEwen, Designing the Internet of Things, Wiley, 2013.						

Hob/BOS Chairman

Reference books/other materials/webresources:

- 1. Bart Baesens, "Analytics in a Big Data World: The Essential Guide to Data Science and its Applications", Wiley Publishers, 2015.
- 2. EMC Education Services, "Data Science and Big Data Analytics: Discovering, Analyzing, Visualizing and Presenting Data", Wiley publishers, 2015.

			CO-PO	CO-PSO Mapping					
PO& PSO / CO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3
CO1	3	2 ·	2	1	2	1	3	2	1
CO2	3	3	2	2	2	2	3	2	2
CO3	2	3	3	2	2	2	3	3	2
CO4	2	2	3	2	3	1	2	2	3
CO5	3	2	3	2	3	2	3	2	3
Average:	2.6	2.4	2.6	1.8	2.4	1.6	2.8	2.2	2.2

HoD/BOS/Chairman

Subject Code	Subject Name	Category	L	T	P	C
MX24001	MEDICAL ROBOTICS	OEC	3	0	0	3
Course Objecti	ves:					
 To expla 	in the basic concepts of robots and types of r	obots				
To discu	ss the designing procedure of manipulators,	actuators and grip	pers			
To impai	t knowledge on various types of sensors and	power sources.				
To explo	re various applications of Robots in Medicin	e.				
To impar	t knowledge on wearable robots.					

UNIT – I INTRODUCTION TO ROBOTICS

Q

Introduction to Robotics, Overview of robot subsystems, Degrees of freedom, configurations and concept of workspace, Dynamic Stabilization.

Sensors and Actuators

Sensors and controllers, Internal and external sensors, position, velocity and acceleration sensors, Proximity sensors, force sensors Pneumatic and hydraulic actuators, Stepper motor control circuits, End effectors, Various types of Grippers, PD and PID feedback actuator models.

UNIT – II MANIPULATORS & BASIC KINEMATICS

0

Construction of Manipulators, Manipulator Dynamic and Force Control, Electronic and pneumatic manipulator, Forward Kinematic Problems, Inverse Kinematic Problems, Solutions of Inverse Kinematic problems.

Navigation and Treatment Planning

Variable speed arrangements, Path determination – Machinery vision, Ranging – Laser – Acoustic, Magnetic, fiber optic and Tactile sensor.

UNIT - III | SURGICAL ROBOTS

9

Da Vinci Surgical System, Image guided robotic systems for focal ultrasound based surgical applications, System concept for robotic Tele-surgical system for off-pump, CABG surgery, Urologic applications, Cardiac surgery, Neuro-surgery, Pediatric and General Surgery, Gynecologic Surgery, General Surgery and Nanorobotics. Case Study

UNIT – IV. REHABILITATION AND ASSISTIVE ROBOTS

9

Pediatric Rehabilitation, Robotic Therapy for the Upper Extremity and Walking, Clinical-Based Gait Rehabilitation Robots, Motion Correlation and Tracking, Motion Prediction, Motion Replication. Portable Robot for Tele rehabilitation, Robotic Exoskeletons – Design considerations, Hybrid assistive limb. Case Study

UNIT - V WEARABLE ROBOTS

9

Augmented Reality, Kinematics and Dynamics for Wearable Robots, Wearable Robot technology, Sensors, Actuators, Portable Energy Storage, Human—robot cognitive interaction (cHRI), Human – robot physical interaction (pHRI), Wearable Robotic Communication - case study

Total Contact Hours: 45

Course Outcomes:	Upon completion of the course students should be able to:
CO1	Describe the configuration, applications of robots and the concept of
COI	grippers and actuators.
CO2	Explain the functions of manipulators and basic kinematics.
CO3	Describe the application of robots in various surgeries.
CO4	Design and analyze the robotic systems for rehabilitation.
CO5	Design the wearable robots.

HoD/BOS Chairman

Textbooks:

- 1. Nagrath and Mittal, "Robotics and Control", Tata McGraw Hill, First edition, 2003
- 2. Spong and Vidhyasagar, "Robot Dynamics and Control", John Wiley and Sons, First edition, 2008

Reference books/other materials/webresources:

- 1. Fu.K.S, Gonzalez. R.C., Lee, C.S.G, "Robotics, control", sensing, Vision and Intelligence, Tata McGraw Hill International, First edition, 2008
- 2. Shane (S.Q.) Xie, Advanced Robotics for Medical Rehabilitation Current State of the Art and Recent Advances, Springer, 2016

		CO-PO Mapping					CO-PSO Mapping		
PO& PSO / CO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3
CO1				1			3	2	1
CO2				2			3	2	2
CO3	2		2	2	2	2	2	3	2
CO4	2		2	2	3	2	3	3	2
CO5	2		2	2	3	3	3	2	3
Average:	1.2		1.2	1.8	1.6	1.4	2.8	2.4	2

HoD/BOs Chairman

Subject Code	Subject Name	Category	L	T	P	C
VE24001	EMBEDDED AUTOMATION	OEC	3	0	0	3
Course Objecti	ves:					
	about the process involved in the design and devided system.	velopment of i	real-1	ime		
To devel	op the embedded C programming skills on 8-bit	microcontrol	ler.			
To study Microcon	about the interfacing mechanism of peripheral ontrollers.	levices with 8	-bit			
To learn	about the tools, firmware related to microcontro	ller programn	ning.			
 To build 	a home automation system.					

UNIT – I	INTRODUCTION TO EMBEDDED C PROG	FRAMMING	9
C Overview	and Program Structure - C Types, Operators and E	Expressions - C Control Flor	w –
C Functions a	nd Program Structures - C Pointers And Arrays - I	FIFO and LIFO - C Structure	es -
Development	Tools		
UNIT – II	AVR MICROCONTROLLER		9
ATMEGA 16	Architecture - Nonvolatile and Data Memorie	es - Port System - Periphe	eral
Features : Ti	ne Base, Timing Subsystem, Pulse Width Modul	ation, USART, SPI, Two W	Vire
Serial Interfa	ce, ADC, Interrupts - Physical and Operating Parar	neters.	
UNIT – III	HARDWARE AND SOFTWARE INTERFAC	CING WITH 8-BIT	9
	SERIES CONTROLLERS		
	vitches - Stack Operation - Implementing Combina		
	nalog To Digital Convertors - Interfacing Digital		
	ven Segment Displays, Dot Matrix Displays - LO		
1	or Interface - Serial EEPROM - Real Time Clock	_	le -
	veform Generation - Communication Links - Syste	em Development Tools.	
	VISION SYSTEM		9
	s of Image Processing - Filtering - Morphological	•	1
	g - Blurring and Sharpening - Segmentation	_	
	ontour Properties - Gradient - Canny Edge D	etector - Object Detection	1 -
Background S			
UNIT – V	HOME AUTOMATION		9
	nation - Requirements - Water Level Notifier - E	_	_
	Package Delivery Detector - Web Enabled Light		
	r Lock - Voice Controlled Home Automation - Sm		
-	sage Monitor -Proximity Garage Door Opener -	Vision Based Authentic Er	ıtry
System			
		Total Contact Hours:	45

Course Outcomes:	Upon completion of the course students should be able to:
CO1	Analyze the 8-bit series microcontroller architecture, features and pin details.
CO2	Write embedded C programs for embedded system application.
CO3	Design and develop real time systems using AVR microcontrollers.
CO4	Design and develop the systems based on vision mechanism.
CO5	Design and develop a real time home automation system.

Textbooks:

- 1. Dhananjay V. Gadre, "Programming and Customizing the AVR Microcontroller", McGraw-Hill, 2001.
- 2. Joe Pardue, "C Programming for Microcontrollers", Smiley Micros, 2005.

Reference books/other materials/webresources:

- 1. Steven F. Barrett, Daniel J. Pack, "ATMEL AVR Microcontroller Primer: Programming and Interfacing", Morgan & Claypool Publishers, 2012
- 2. Mike Riley, "Programming Your Home Automate With Arduino, Android and Your Computer", the Pragmatic Programmers, Llc, 2012.

		CO-PO Mapping						CO-PSO Mapping			
PO& PSO / CO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3		
CO1	1		1	1	1		3	2	1		
CO2	1	3	1	1	1	3	3	2	2		
CO3	1	3	1	1	1	3	3	3	2		
CO4	1	3	1	1	1	3	2	2	3		
CO5	1	3	1	1	1	3	3	3	3		
Average:	1	2.4	1	1	1	2.4	2.8	2.4	2.2		

HoD/BOS Chairman

Subject Code	Subject Name	Category	L	T	P	C
CX24001	ENVIRONMENTAL SUSTAINABILITY	OEC	2	0	0	3
Course Objectiv	ves:	1				
• To introd externalit	uce fundamental concepts of environmental valuties.	lation, proper	ty ri	ghts,	and	
To explain economic	n the principles of sustainable development and es.	the role of na	itura	l reso	ource	;
 To highli pollution 	ght the importance of biodiversity, forest habitat	s, and the eff	ects	of air		
	stand the various types and impacts of pollution al warming.	including wa	ter, s	solid	wast	te,
	re environmental economics policies and the relationship to the re	ationship bety	veen			

UNIT - I INTRODUCTION	9
Valuing the Environment: Concepts, Valuing the Environment: Methods, Property Rig	hts,
Externalities, and Environmental Problems	
UNIT – II CONCEPT OF SUSTAINABILITY	9
Sustainable Development: Defining the Concept, the Population Problem, Natural Resource	;
Economics: An Overview, Energy, Water, Agriculture	
UNIT – III SIGNIFICANCE OF BIODIVERSITY	9
Biodiversity, Forest Habitat, Commercially Valuable Species, Stationary - Source Local Air	
Pollution, Acid Rain and Atmospheric Modification, Transportation	
UNIT – IV POLLUTION IMPACTS	9
Water Pollution, Solid Waste and Recycling, Toxic Substances and Hazardous Wastes, Glob	bal
Warming.	
UNIT – V· ENVIRONMENTAL ECONOMICS	9
Development, Poverty, and the Environment, Visions of the Future, Environmental econom	ics
and policy by Tom Tietenberg, Environmental Economics	
Total Contact Hours :	45

Course Outcomes:	Upon completion of the course students should be able to:
CO1	Describe methods to value the environment and explain related
COI	economic concepts like externalities and property rights.
CO2	Analyze sustainability issues with respect to population, energy, water,
COZ	and agriculture.
CO3	Assess the significance of biodiversity and the environmental impacts
COS	of air pollution and habitat loss.
CO4	Evaluate pollution types and their environmental consequences
C04	including waste management and global warming.
CO5	Discuss environmental economic policies and their role in addressing
005	poverty and promoting sustainable development.

HoD/BOS Chairman

Textbooks:

- 1. Development, Poverty, and the Environment, Visions of the Future, Environmental economics and policy by Tom Tietenberg, Environmental Economics
- 2. Stephen Doven, Environment and Sustainability Policy: Creation, Implementation, Evaluation, the Federation Press, 2005

Reference books/other materials/webresources:

- 1. Robert Brinkmann., Introduction to Sustainability, Wiley-Blackwell., 2016
- 2. Bhavik R Bakshi., Sustainable Engineering: Principles and Practice, Cambridge University Press, 2019
- 3. Niko Roorda., Fundamentals of Sustainable Development, 3rd Edn, Routledge, 2020

PO& PSO / CO		CO-PO Mapping						O-PSO Mappi	ing
	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3
CO1	3	2	2	1	2	3	2	2	1
CO2	3	3	2	2	3	3	3	2	2
CO3	2	2	2	2	3	3	3	3	2
CO4	2	3	2	2	2	3	2	2	2
CO5	3	2	3	2	3	3	3	2	2
Average:	2.6	2.4	2.2	1.8	2.6	3	2.6	2.2	1.8

HoD/BOS Chairman

	Subject Name	Category	L	Т	P	C
TX24001	TEXTILE REINFORCED COMPOSITES	OEC	2	0	0	3
Course Objecti	ves:					
 To introd 	uce the fundamentals of composite materials, for	cusing on rei	nforc	eme	nts a	nd
their pro	perties.	_				
 To study 	the chemistry, preparation, and interaction mechanisms	anisms of va	rious	mat	rix	
materials	used in composites.					
 To famili 	arize students with different composite manufact	uring technic	ques	for		
thermopl	astics and thermosets.					
	stand testing methods for composites, including a	mechanical a	nd pl	nysic	al	
property	evaluation.					
	ze the mechanics of composites using micro, mad	ero, and class	ical	lami	natio	n
	including failure predictions.					
	EINFORCEMENTS					9
	composites -classification and application; re					its
properties: prepa	ration of reinforced materials and quality evalua	tion: preform	c for	vari	OHE	
, , , , ,	1 2	non, protom	12 101	v air i	Ous	
	1 7	orom, protom	15 101	vari	Ous	
composites UNIT – II M	IATRICES				1 1	9
composites UNIT – II M Preparation, che	IATRICES emistry, properties and applications of thermore	plastic and t	therm	noset	1 1	-
composites UNIT – II M Preparation, che mechanism of in	EMISTRICES emistry, properties and applications of thermogenetic and reinforcements; optimizes and reinforcements.	plastic and t	therm	noset	1 1	_
Composites UNIT – II M. Preparation, che mechanism of in UNIT – III C	IATRICES emistry, properties and applications of thermoleteraction of matrices and reinforcements; optimized of the composite MANUFACTURING	plastic and t	therm	noset	res	ins;
composites UNIT – II M Preparation, che mechanism of in UNIT – III C Classification; n	EATRICES emistry, properties and applications of thermogenerates and reinforcements; optimized of the composite of the compo	plastic and tation of mat	therm rices	ther	res	ins;
composites UNIT – II M. Preparation, che mechanism of in UNIT – III C. Classification; n Hand layup, Fil	EMATRICES emistry, properties and applications of thermoleteraction of matrices and reinforcements; optimized the composite of the composite	plastic and taxation of matermoplastics	therm rices and	ther	res	ins;
composites UNIT – II M. Preparation, che mechanism of in UNIT – III C. Classification; n Hand layup, Fil pultrusion, vac	EMATRICES emistry, properties and applications of thermogeneration of matrices and reinforcements; optimized of the matrices and applications of thermogeneration of the matrices and applications of thermogeneration of the matrices and applications of the matrices and reinforcements; optimized of the matrices and reinforcements and reinforcements and reinforcements and reinforcements and reinforcements are reinforcements.	plastic and taxation of matermoplastics	therm rices and	ther	res	ins;
composites UNIT – II M. Preparation, che mechanism of in UNIT – III C Classification; n Hand layup, Fil pultrusion, vac	EMATRICES emistry, properties and applications of thermoleteraction of matrices and reinforcements; optimized the composite of the composite	plastic and taxation of matermoplastics	therm rices and	ther	res	ins;
composites UNIT – II M Preparation, che mechanism of in UNIT – III C Classification; n Hand layup, Fil pultrusion, vacu	EMATRICES emistry, properties and applications of thermogeneration of matrices and reinforcements; optimized of the matrices and applications of thermogeneration of the matrices and applications of thermogeneration of the matrices and applications of the matrices and reinforcements; optimized of the matrices and reinforcements and reinforcements and reinforcements and reinforcements and reinforcements are reinforcements.	plastic and taxation of matermoplastics	therm rices and	ther	res	ins;
Composites UNIT – II M. Preparation, che mechanism of in UNIT – III C. Classification; n Hand layup, Fil pultrusion, vacuomposites and UNIT – IV T.	EMATRICES emistry, properties and applications of thermogeneration of matrices and reinforcements; optimized the composites manufacturing for both the ament Winding, Resin transfer moulding, prepared impregnation methods, compression mecomposite design requirements	plastic and to zation of mate nermoplastics regs and auto oulding; pos	therm crices and oclav	there moces	mos ouldi sing	ets- ing, of
composites UNIT – II	EMATRICES emistry, properties and applications of thermogeneteraction of matrices and reinforcements; optimized of the matrices and reinforcements; optimized of the matrices and reinforcements; optimized of the matrices o	plastic and to zation of matermoplastics regs and autopulding; postes, tensile, to	therm rices and oclav at pr	ther oces	mos ouldi sing	ets- ing, of
composites UNIT – II	EMATRICES Emistry, properties and applications of thermogeneteraction of matrices and reinforcements; optimized of the matrices and reinforcements; optimized of the matrices and reinforcements; optimized of the matrices of the matrices and reinforcements; optimized of the matrices of	plastic and to zation of matermoplastics regs and autopulding; postes, tensile, to	therm rices and oclav at pr	ther oces	mos ouldi sing	ets- ing, of
composites UNIT – II M Preparation, chemechanism of in UNIT – III C Classification; n Hand layup, Fil pultrusion, vactor composites and c UNIT – IV T Fibre volume ar compression, into	EMATRICES Emistry, properties and applications of thermogeneteraction of matrices and reinforcements; optimized of the matrices and reinforcements; optimized of the matrices and reinforcements; optimized of the matrices of the matrices and reinforcements; optimized of the matrices of	plastic and to zation of matermoplastics regs and autopulding; postes, tensile, to	therm rices and oclav at pr	ther oces	mos ouldi sing	ets- ing, of
Composites UNIT – II	emistry, properties and applications of thermogeteraction of matrices and reinforcements; optimized of the model of the model of the matrices and reinforcements; optimized of the matrices and reinforcements; optimized of the matrices of the matrices and reinforcements; optimized of the matrices of the matrices and reinforcements of the matrices and fatigue properties and fatigue pr	plastic and to zation of matermoplastics regs and autopulding; postes, tensile, if thermoset a	therm rices and oclav at pr	ther e moces	res rmos ould sing imp	of 9 act, stic
composites UNIT – II	EMATRICES Emistry, properties and applications of thermogeneteraction of matrices and reinforcements; optimized of the matrices and reinforcements; optimized of the matrices and reinforcements; optimized of the matrices o	plastic and to treat and the treat and automorphisms and automorphisms and automorphisms are the treat and the treat are treat a	therm rices and oclav at pr	there moces	mos ould sing impopla	9 ets-ing, of 9 act, stic

Course Outcomes:	Upon completion of the course students should be able to:
CO1	Describe types of reinforcements, fiber properties, and methods to prepare reinforced composite materials.
CO2	Explain the characteristics and role of thermoplastic and thermoset matrices in composites.
CO3	Select appropriate composite manufacturing processes for given applications and materials.
CO4	Conduct and interpret composite material testing for tensile, impact, compression, and fatigue properties.
CO5	Apply micromechanics and classical lamination theory to analyze composite behavior and predict failure modes.

Tex	Textbooks:					
1.	BorZ.Jang, "Advanced Polymer composites", ASM International, USA, 1994.					
2.	Carlsson L.A. and Pipes R.B., "Experimental Characterization of advanced composite					
	Materials", SecondEdition, CRCPress, New Jersey, 1996.					
3.	George LubinandStanley T.Peters, "Handbook of Composites", Springer					
	Publications, 1998.					

Ref	Reference books/other materials/webresources:					
1.	Mel. M. Schwartz, "Composite Materials", Vol. 1 &2, Prentice Hall PTR, New					
	Jersey,1997.					
2.	RichardM.Christensen, "Mechanics of compositematerials", DoverPublications, 2005.					
3.	Sanjay K. Mazumdar, "Composites Manufacturing: Materials, Product, and Process					
	Engineering", CRCPress, 2001					

	CO-PO Mapping						CO-PSO Mapping		
PO& PSO / CO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3
CO1	3	2	2	2	2	1	2	2	1
CO2	3	2	2	2	2	2	2	2	2
CO3	3	3	3	2	3	2	3	2	2
CO4	3	3	3	2	3	2	3	2	2
CO5	3	3	3	3	3	2	3	3	2
Average:	3	2.6	2.6	2.2	2.6	1.8	2.6	2.2	1.8

Hod/BOS Chairman

Subject Code	Subject Name	Category	L	T	P	C			
NT24001	NANOCOMPOSITE MATERIALS	OEC	2	0	0	3			
Course Objectiv	Course Objectives:								
To provide	 To provide foundational knowledge on the structure, properties, and processing of 								
nanocom	posites.								
• To explore metal-based nanocomposites, their synthesis techniques, and functional					nal				
propertie	s								
To under	stand the design, characterization, and application	ns of polyme	r-bas	sed					
nanocom	nanocomposites.								
To introd	To introduce natural and synthetic biomaterial-based nanocomposites and their								
biomedical applications.									
To familiarize students with technological applications of nanocomposites in textil				ktiles	s,				
cosmetic	cosmetics, and food industries.								

UNIT – I BASICS OF NANOCOMPOSITES	9
Nomenclature, Properties, features and processing of nanocomposites. Sample Preparation a	and
Characterization of Structure and Physical properties. Designing, stability and mechani	cal
properties and applications of super hard nanocomposites.	
UNIT – II METAL BASED NANOCOMPOSITES	9
Metal-metal nanocomposites, some simple preparation techniques and their properties. Metal-metal nanocomposites, some simple preparation techniques and their properties.	
Oxide or Metal-Ceramic composites, Different aspects of their preparation techniques a	
their final properties and functionality. Fractal based glass-metal nanocomposites,	its
designing and fractal dimension analysis. Core-Shell structured nanocomposites	
UNIT – III POLYMER BASED NANOCOMPOSITES	9
Preparation and characterization of diblock Copolymer based nanocomposites; Polymer	
Carbon nanotubes based composites, their mechanical properties, and industrial possibilities	3.
UNIT – IV NANOCOMPOSITE FROM BIOMATERIALS	9
Natural nanocomposite systems - spider silk, bones, shells; organic-inorganic nanocomposite	
formation through self-assembly. Biomimetic synthesis of nanocomposites material; Use	of
synthetic nanocomposites for bone, teeth replacement.	
UNIT – V NANOCOMPOSITE TECHNOLOGY	9
Nanocomposite membrane structures- Preparation and applications. Nanotechnology	in
Textiles and Cosmetics-Nano-fillers embedded polypropylene fibers - Soil repellence, Lo	tus
effect - Nano finishing in textiles (UV resistant, anti-bacterial, hydrophilic, self-cleani	ng,
flame retardant finishes), Sun-screen dispersions for UV protection using titanium oxide	e –
Colour cosmetics. Nanotechnology in Food Technology - Nanopackaging for enhanced sh	nelf
life - Smart/Intelligent packaging.	
Total Contact Hours :	45

Course Outcomes: Upon completion of the course students should be able to:		
CO1	Explain the basic concepts, processing methods, and mechanical	
CO1	behavior of nanocomposites.	
CO2	Describe preparation techniques and analyze the properties of various	
CO2	metal-based nanocomposites.	
CO2	Evaluate the synthesis and mechanical performance of polymer-based	
CO3	nanocomposites for industrial use.	
CO4	Analyze the role of biomaterials in forming nanocomposites and their	
CO4	application in biomedicine.	
CO5	Assess the use of nanocomposites in consumer technologies such as	
COS	textiles, cosmetics, and food packaging.	

Tex	Textbooks:					
1.	Introduction to Nanocomposite Materials. Properties, Processing, Characterization-					
	Thomas E. Twardowski. 2007. DEStech Publications. USA.					
2.	Nanocomposites Science and Technology - P. M. Ajayan, L.S. Schadler, P. V.Braun					
	2006.					

Ref	Reference books/other materials/webresources:					
1.	P. Brown and K. Stevens, Nanofibers and Nanotechnology in Textiles, Woodhead					
	publication, London, 2006					
2.	Nanometer versus micrometer-sized particles-Christian Brosseau, Jamal BeN Youssef,					
	Philippe Talbot, Anne-Marie Konn, (Review Article) J. Appl. Phys, Vol 93, 2003					
3.	Diblock Copolymer, - Aviram (Review Article), Nature, 2002					

	CO-PO Mapping						CO-PSO Mapping		
PO& PSO / CO	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3
CO1	3	2	2	2	2	2	2	2	2
CO2	3	3	2	2	3	2	3	2	2
CO3	3	3	3	2	3	2	3	2	3
CO4	2	3	2	2	2	2	2	3	2
CO5	3	3	3	2	3	3	3	3	3
Average:	2.8	2.8	2.4	2	2.6	2.2	2.6	2.4	2.4

HoD/BOS Chairman

Rrincipal

Subject Code	Subject Name	Category	L	T	P	C
BY24001	IPR, BIOSAFETY AND ENTREPRENEURSHIP	OEC	2	0	0	3
0 011 1						

Course Objectives:

- To introduce the fundamentals of Intellectual Property Rights (IPR) and its significance in research and development.
- To familiarize students with various international treaties, patent filing processes, and legal implications of patents.
- To impart knowledge on biosafety principles, containment levels, and national/international biosafety guidelines.
- To understand the regulation and risk assessment of genetically modified organisms (GMOs) and related international protocols.
- To develop entrepreneurial skills and explore opportunities in biotechnology and small-scale enterprises.

UNIT-I IPR

9

Intellectual property rights – Origin of the patent regime – Early patents act & Indian pharmaceutical industry – Types of patents – Patent Requirements – Application preparation filing and prosecution – Patentable subject matter – Industrial design, Protection of GMO's IP as a factor in R&D,IP's of relevance to biotechnology and few case studies.

UNIT – II AGREEMENTS, TREATIES AND PATENT FILING PROCEDURES 9

History of GATT Agreement – Madrid Agreement – Hague Agreement – WIPO Treaties – Budapest Treaty – PCT – Ordinary – PCT – Conventional – Divisional and Patent of Addition – Specifications – Provisional and complete – Forms and fees Invention in context of "prior art" – Patent databases – Searching International Databases – Country-wise patent searches (USPTO, espacenet(EPO) – PATENT Scope (WIPO) – IPO, etc National & PCT filing procedure – Time frame and cost – Status of the patent applications filed – Precautions while patenting – disclosure/non-disclosure – Financial assistance for patenting – Introduction to existing schemes Patent licensing and agreement Patent infringement – Meaning, scope, litigation, case studies

UNIT - III | BIOSAFETY

9

Introduction – Historical Backround – Introduction to Biological Safety Cabinets – Primary Containment for Biohazards – Biosafety Levels – Biosafety Levels of Specific Microorganisms – Recommended Biosafety Levels for Infectious Agents and Infected Animals – Biosafety guidelines – Government of India.

UNIT – IV GENETICALLY MODIFIED ORGANISMS

9

Definition of GMOs & LMOs – Roles of Institutional Biosafety Committee – RCGM – GEAC etc. for GMO applications in food and agriculture – Environmental release of GMOs – Risk Analysis – Risk Assessment – Risk management and communication – Overview of National Regulations and relevant International Agreements including Cartegana Protocol.

UNIT – V ENTREPRENEURSHIP DEVELOPMENT

9

Introduction – Entrepreneurship Concept – Entrepreneurship as a career – Entrepreneurial personality – Characteristics of successful Entrepreneur – Factors affecting entrepreneurial growth – Entrepreneurial Motivation – Competencies – Mobility – Entrepreneurship Development Programmes (EDP) - Launching Of Small Enterprise - Definition, Characteristics – Relationship between small and large units – Opportunities for an Entrepreneurial career – Role of small enterprise in economic development – Problems of small scale industries – Institutional finance to entrepreneurs - Institutional support to entrepreneurs.

Total Contact Hours: 45

HSD/BOS Chairman

C - Principal

Course Outcomes:	Upon completion of the course students should be able to:
CO1	Understand the scope, types, and procedures involved in Intellectual
CO1	Property Rights (IPR) and patents.
COA	Analyze global treaties and agreements related to patent protection and
CO2	apply patent filing procedures.
CO2	Apply bio safety guidelines to laboratory practices and interpret safety
CO3	levels for various biohazards.
CO4	Evaluate bio safety regulations and risk management strategies
CO4	associated with GMOs and LMOs.
005	Demonstrate entrepreneurial knowledge by identifying opportunities and
CO5	challenges in establishing small enterprises.

Textbooks: Bouchoux, D.E., "Intellectual Property: The Law of Trademarks, Copyrights, Patents, and Trade Secrets for the Paralegal", 3rd Edition, Delmar Cengage Learning, 2008. Fleming, D.O. and Hunt, D.L., "Biological Safety: Principles and Practices", 4th Edition, American Society for Microbiology, 2006.

Refe	erence books/other materials/web resources:
1.	Irish, V., "Intellectual Property Rights for Engineers", 2nd Edition, The Institution of
	Engineering and Technology, 2005.
2.	Mueller, M.J., "Patent Law", 3rd Edition, Wolters Kluwer Law & Business, 2009.
3.	S.S Khanka, "Entrepreneurial Development", S.Chand & Company LTD, New Delhi,
	2007.

PO& PSO / CO	CO-PO Mapping						CO-PSO Mapping		
	PO1	PO2	PO3	PO4	PO5	PO6	-PSO1	PSO2	PSO3
CO1	3	2	2	2	2	2	2	2	2
CO2	3	3	3	2	3	2	3	2	2
CO3	3	2	2	2	2	2	2	3	2
CO4	2	2	3	2	2	3	3	3	2
CO5	2	3	3	2	3	3	3	3	3
Average:	2.6	2.4	2.6	2	2.4	2.4	2.6	2.6	2.2

Hol BOS Chairman